Skip to main content

Get Your Embedding Space in Order: Domain-Adaptive Regression for Forest Monitoring

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Abstract

Image-level regression is an important task in Earth observation, where visual domain and label shifts are a core challenge hampering generalization. However, cross-domain regression within remote sensing data remains understudied due to the absence of suited datasets. We introduce a new dataset with aerial and satellite imagery in five countries with three forest-related regression tasks (Dataset and code available here: dgominski.github.io/drift/). To match real-world applicative interests, we compare methods through a restrictive setup where no prior on the target domain is available during training, and models are adapted with limited information during testing. Building on the assumption that ordered relationships generalize better, we propose manifold diffusion for regression as a strong baseline for transduction in low-data regimes. Our comparison highlights the comparative advantages of inductive and transductive methods in cross-domain regression.

S. Li and D. Gominski—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Trees outside forests - towards a better awareness. https://www.fao.org/3/y2328e/y2328e25.htm

  2. Akiva, P., Purri, M., Leotta, M.: Self-supervised material and texture representation learning for remote sensing tasks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8203–8215 (2022)

    Google Scholar 

  3. Beery, S., Van Horn, G., Perona, P.: Recognition in terra incognita. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 472–489 (2018)

    Google Scholar 

  4. Beery, S., et al.: The auto arborist dataset: a large-scale benchmark for multiview urban forest monitoring under domain shift. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 21262–21275 (2022)

    Google Scholar 

  5. Brandt, M., et al.: An unexpectedly large count of trees in the west African Sahara and Sahel. Nature 587(7832), 78–82 (2020)

    Article  Google Scholar 

  6. Burgert, T., Ravanbakhsh, M., Demir, B.: On the effects of different types of label noise in multi-label remote sensing image classification. IEEE Trans. Geosci. Remote Sens. (2022)

    Google Scholar 

  7. Chen, G., Shang, Y.: Transformer for tree counting in aerial images. Remote Sens. 14(3), 476 (2022)

    Article  Google Scholar 

  8. Chen, X., Wang, S., Wang, J., Long, M.: Representation subspace distance for domain adaptation regression. In: International Conference on Machine Learning, pp. 1749–1759 (2021)

    Google Scholar 

  9. Deng, S., Katoh, M., Yu, X., Hyyppä, J., Gao, T.: Comparison of tree species classifications at the individual tree level by combining ALS data and RGB images using different algorithms. Remote Sens. 8(12), 1034 (2016)

    Article  Google Scholar 

  10. Donoser, M., Bischof, H.: Diffusion processes for retrieval revisited. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1320–1327 (2013)

    Google Scholar 

  11. Dosovitskiy, A., et al.: An image is worth 16\(\times \)16 words: transformers for image recognition at scale. In: International Conference on Learning Representations (2021)

    Google Scholar 

  12. DrivenData: The BioMassters. https://www.drivendata.org/competitions/99/biomass-estimation/page/534/

  13. Fayad, I., et al.: Hy-TeC: a hybrid vision transformer model for high-resolution and large-scale mapping of canopy height. Remote Sens. Environ. 302, 113945 (2024)

    Article  Google Scholar 

  14. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation of deep networks. In: Proceedings of the 34th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 70, pp. 1126–1135. PMLR (2017)

    Google Scholar 

  15. Girard, N., Charpiat, G., Tarabalka, Y.: Noisy supervision for correcting misaligned cadaster maps without perfect ground truth data. In: 2019 IEEE International Geoscience and Remote Sensing Symposium, pp. 10103–10106 (2019)

    Google Scholar 

  16. Iscen, A., Tolias, G., Avrithis, Y., Chum, O.: Label propagation for deep semi-supervised learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  17. Iscen, A., Tolias, G., Avrithis, Y., Furon, T., Chum, O.: Efficient diffusion on region manifolds: Recovering small objects with compact CNN representations. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 926–935 (2017)

    Google Scholar 

  18. Jucker, T., et al.: Allometric equations for integrating remote sensing imagery into forest monitoring programmes. Glob. Change Biol. 23(1), 177–190 (2017)

    Article  Google Scholar 

  19. Kalinicheva, E., Landrieu, L., Mallet, C., Chehata, N.: Multi-layer modeling of dense vegetation from aerial LiDAR scans. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, pp. 1342–1351 (2022)

    Google Scholar 

  20. Knapp, N., Fischer, R., Huth, A.: Linking lidar and forest modeling to assess biomass estimation across scales and disturbance states. Remote Sens. Environ. 205, 199–209 (2018)

    Article  Google Scholar 

  21. Kundu, J.N., Venkat, N., Babu, R.V.: Universal source-free domain adaptation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2020)

    Google Scholar 

  22. Lang, N., Jetz, W., Schindler, K., Wegner, J.D.: A high-resolution canopy height model of the earth. Nat. Ecol. Evol. 7(11), 1778–1789 (2023)

    Article  Google Scholar 

  23. Lee, S.H., Kim, C.S.: Order learning using partially ordered data via chainization. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13673, pp. 196–211. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19778-9_12

    Chapter  Google Scholar 

  24. Lee, S.H., Shin, N.H., Kim, C.S.: Geometric order learning for rank estimation. In: Advances in Neural Information Processing Systems, vol. 35, pp. 27–39 (2022)

    Google Scholar 

  25. Lee, S., Seo, S., Kim, J., Lee, Y., Hwang, S.: Few-shot fine-tuning is all you need for source-free domain adaptation (2023). arXiv preprint arXiv:2304.00792

  26. Li, S., et al.: Deep learning enables image-based tree counting, crown segmentation and height prediction at national scale. PNAS Nexus 2(4) (2023)

    Google Scholar 

  27. Li, S., et al.: Deep learning tree and forest biomass from sub-meter resolution images (2023). https://doi.org/10.21203/rs.3.rs-3335298

  28. Li, W., Buitenwerf, R., Munk, M., Bøcher, P.K., Svenning, J.C.: Deep-learning based high-resolution mapping shows woody vegetation densification in greater Maasai Mara ecosystem. Remote Sens. Environ. 247, 111953 (2020)

    Article  Google Scholar 

  29. Li, Y., Li, M., Li, C., Liu, Z.: Forest aboveground biomass estimation using Landsat 8 and sentinel-1a data with machine learning algorithms. Sci. Rep. 10(1), 9952 (2020)

    Article  Google Scholar 

  30. Liang, J., Hu, D., Feng, J.: Do we really need to access the source data? Source hypothesis transfer for unsupervised domain adaptation. In: International Conference on Machine Learning (ICML), pp. 6028–6039 (2020)

    Google Scholar 

  31. Lim, K., Shin, N.H., Lee, Y.Y., Kim, C.S.: Order learning and its application to age estimation. In: International Conference on Learning Representations (2020)

    Google Scholar 

  32. Liu, S., et al.: The overlooked contribution of trees outside forests to tree cover and woody biomass across Europe. Sci. Adv. 9(37) (2023)

    Google Scholar 

  33. Marsocci, V., Gonthier, N., Garioud, A., Scardapane, S., Mallet, C.: GeoMultiTaskNet: remote sensing unsupervised domain adaptation using geographical coordinates. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, pp. 2075–2085 (2023)

    Google Scholar 

  34. Mathelin, A.D., Richard, G., Deheeger, F., Mougeot, M., Vayatis, N.: Adversarial weighting for domain adaptation in regression. In: 2021 IEEE 33rd International Conference on Tools with Artificial Intelligence (ICTAI), pp. 49–56. IEEE Computer Society (2021)

    Google Scholar 

  35. Mugabowindekwe, M., et al.: Nation-wide mapping of tree-level aboveground carbon stocks in Rwanda. Nat. Clim. Chang. 13(1), 91–97 (2023)

    Article  Google Scholar 

  36. Nejjar, I., Wang, Q., Fink, O.: DARE-GRAM: unsupervised domain adaptation regression by aligning inversed gram matrices. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2023)

    Google Scholar 

  37. Nguyen, K.D., Tran, Q.H., Nguyen, K., Hua, B.S., Nguyen, R.: Inductive and transductive few-shot video classification via appearance and temporal alignments. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13680, pp. 471–487. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20044-1_27

    Chapter  Google Scholar 

  38. Pardoe, D., Stone, P.: Boosting for regression transfer. In: International Conference on Machine Learning (2010)

    Google Scholar 

  39. Robinson, C., et al.: Large scale high-resolution land cover mapping with multi-resolution data. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 12718–12727 (2019)

    Google Scholar 

  40. Roussel, J.R., et al.: lidR: an R package for analysis of airborne laser scanning (ALS) data. Remote Sens. Environ. 251, 112061 (2020)

    Article  Google Scholar 

  41. Shin, N.H., Lee, S.H., Kim, C.S.: Moving window regression: a novel approach to ordinal regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022)

    Google Scholar 

  42. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: 3rd International Conference on Learning Representations (ICLR 2015), pp. 1–14 (2015)

    Google Scholar 

  43. Snell, J., Swersky, K., Zemel, R.: Prototypical networks for few-shot learning. In: Advances in Neural Information Processing Systems (2017)

    Google Scholar 

  44. Sumbul, G., Demir, B.: Label noise robust image representation learning based on supervised variational autoencoders in remote sensing. In: IEEE International Geoscience and Remote Sensing Symposium (IGARSS) (2023)

    Google Scholar 

  45. Teshima, T., Sato, I., Sugiyama, M.: Few-shot domain adaptation by causal mechanism transfer. In: Proceedings of the 37th International Conference on Machine Learning (2020)

    Google Scholar 

  46. Voulgaris, G., Philippides, A., Dolley, J., Reffin, J., Marshall, F., Quadrianto, N.: Seasonal domain shift in the global south: dataset and deep features analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, pp. 2116–2124 (2023)

    Google Scholar 

  47. Wang, B., Mendez, J., Cai, M., Eaton, E.: Transfer learning via minimizing the performance gap between domains. In: Advances in Neural Information Processing Systems, vol. 32. Curran Associates, Inc. (2019)

    Google Scholar 

  48. Wang, S., Han, W., Huang, X., Zhang, X., Wang, L., Li, J.: Trustworthy remote sensing interpretation: concepts, technologies, and applications. ISPRS J. Photogramm. Remote. Sens. 209, 150–172 (2024)

    Article  Google Scholar 

  49. Weinstein, B.G., et al.: A benchmark dataset for canopy crown detection and delineation in co-registered airborne RGB, LiDAR and hyperspectral imagery from the national ecological observation network. PLoS Comput. Biol. 17(7), e1009180 (2021)

    Article  Google Scholar 

  50. Zhou, D., Bousquet, O., Lal, T., Weston, J., Schölkopf, B.: Learning with local and global consistency. In: Advances in Neural Information Processing Systems, vol. 16. MIT Press (2003)

    Google Scholar 

Download references

Acknowledgements

PC acknowledges support from the European Space Agency Climate Change Initiative (ESA-CCI) Biomass project (ESA ESRIN/4000123662) and RECCAP2 project 1190 (ESA ESRIN/4000123002/ 18/I-NB) and the ANR BMBF French German AI4FOREST (ANR-22-FAI1-0002).

MB and SL were supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 947757 TOFDRY) and a DFF Sapere Aude grant (no. 9064-00049B).

DG ackowledge support by the European Union’s Eurostars programme through the C-Trees project, grant number E114613.

XT acknowledges funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 947757 TOFDRY).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitri Gominski .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 2615 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, S., Gominski, D., Brandt, M., Tong, X., Ciais, P. (2024). Get Your Embedding Space in Order: Domain-Adaptive Regression for Forest Monitoring. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15135. Springer, Cham. https://doi.org/10.1007/978-3-031-72980-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72980-5_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72979-9

  • Online ISBN: 978-3-031-72980-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics