Abstract
Highlighting particularly relevant regions of an image can improve the performance of vision-language models (VLMs) on various vision-language (VL) tasks by guiding the model to attend more closely to these regions of interest. For example, VLMs can be given a “visual prompt”, where visual markers such as bounding boxes delineate key image regions. However, current VLMs that can incorporate visual guidance are either proprietary and expensive or require costly training on curated data with visual prompts. We introduce Contrastive Region Guidance (CRG), a training-free guidance method that enables open-source VLMs to respond to visual prompts. CRG contrasts model outputs produced with and without visual prompts, factoring out biases revealed by the model when answering without the information required to produce a correct answer. CRG achieves substantial improvements in a wide variety of VL tasks: When region annotations are provided, CRG increases absolute accuracy by up to \(11.1\%\) on ViP-Bench, a collection of six diverse region-based tasks such as recognition, math, and object relationship reasoning. We also show CRG’s applicability to spatial reasoning, with \(10\%\) improvement on What’sUp, as well as to compositional generalization – improving accuracy by \(11.5\%\) and \(7.5\%\) on two challenging splits from SugarCrepe – and to image-text alignment for generated images, where we improve by 8.4 AUROC and 6.8 F1 points on SeeTRUE. CRG also allows us to re-rank proposed regions in referring expression comprehension and phrase grounding benchmarks like RefCOCO/+/g and Flickr30K Entities, with an average gain of \(3.2\%\) in accuracy. Our analysis explores alternative masking strategies for CRG, empirically validating CRG’s design choices (Project page: https://contrastive-region-guidance.github.io/).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Antol, S., et al.: VQA: visual question answering. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2425–2433 (2015)
Bahng, H., Jahanian, A., Sankaranarayanan, S., Isola, P.: Exploring visual prompts for adapting large-scale models (2022)
Bai, J., et al.: Qwen-VL: a versatile vision-language model for understanding, localization, text reading, and beyond. arXiv preprint arXiv:2308.12966 (2023)
Bai, Y., et al.: Sequential modeling enables scalable learning for large vision models (2023)
Bar, A., Gandelsman, Y., Darrell, T., Globerson, A., Efros, A.A.: Visual Prompting via Image Inpainting. In: NeurIPS (2022)
Cai, M., et al.: Making large multimodal models understand arbitrary visual prompts (2023). http://arxiv.org/abs/2312.00784
Chen, K., Zhang, Z., Zeng, W., Zhang, R., Zhu, F., Zhao, R.: Shikra: unleashing multimodal LLM’s referential dialogue magic. arXiv preprint arXiv:2306.15195 (2023)
Chen, X., et al.: PaLI-X: on scaling up a multilingual vision and language model. arXiv preprint arXiv:2305.18565 (2023)
Chen, X., Zhao, Z., Zhang, Y., Duan, M., Qi, D., Zhao, H.: FocalClick: towards practical interactive image segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1300–1309 (2022)
Chen, Z., Zhao, Z., Luo, H., Yao, H., Li, B., Zhou, J.: HALC: object hallucination reduction via adaptive focal-contrast decoding. arXiv preprint arXiv:2403.00425 (2024)
Cheng, T., Song, L., Ge, Y., Liu, W., Wang, X., Shan, Y.: YOLO-world: real-time open-vocabulary object detection. In: CVPR (2024)
Cho, J.W., Kim, D.J., Ryu, H., Kweon, I.S.: Generative bias for robust visual question answering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11681–11690 (2023)
Dai, W., et al.: InstructBLIP: towards general-purpose vision-language models with instruction tuning. In: Thirty-Seventh Conference on Neural Information Processing Systems (2023). https://openreview.net/forum?id=vvoWPYqZJA
Dosovitskiy, A., et al.: An image is worth 16\(\times \)16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)
Goyal, Y., Khot, T., Summers-Stay, D., Batra, D., Parikh, D.: Making the V in VQA matter: elevating the role of image understanding in visual question answering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6904–6913 (2017)
He, M., et al.: Efficient multimodal learning from data-centric perspective. arXiv preprint arXiv:2402.11530 (2024)
Ho, J., Salimans, T.: Classifier-free diffusion guidance. In: NeurIPS 2021 Workshop on Deep Generative Models and Downstream Applications (2021). https://openreview.net/forum?id=qw8AKxfYbI
Honnibal, M., Montani, I., Landeghem, S.V., Boyd, A.: spaCy: industrial-strength natural language processing in python (2020). https://doi.org/10.5281/zenodo.1212303, https://spacy.io
Hsieh, C.Y., Zhang, J., Ma, Z., Kembhavi, A., Krishna, R.: SugarCrepe: fixing hackable benchmarks for vision-language compositionality. In: Thirty-Seventh Conference on Neural Information Processing Systems Datasets and Benchmarks Track (2023)
Kamath, A., Singh, M., LeCun, Y., Misra, I., Synnaeve, G., Carion, N.: MDETR–modulated detection for end-to-end multi-modal understanding. arXiv preprint arXiv:2104.12763 (2021)
Kamath, A., Hessel, J., Chang, K.W.: What’s “up” with vision-language models? Investigating their struggle with spatial reasoning. In: Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, pp. 9161–9175 (2023)
Kazemzadeh, S., Ordonez, V., Matten, M., Berg, T.: ReferitGame: referring to objects in photographs of natural scenes. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 787–798 (2014)
Khattak, M.U., Rasheed, H., Maaz, M., Khan, S., Khan, F.S.: MaPLe: multi-modal prompt learning. In: CVPR (2023). https://doi.org/10.1109/CVPR52729.2023.01832
Kirillov, A., et al.: Segment anything. arXiv:2304.02643 (2023)
Kornblith, S., Li, L., Wang, Z., Nguyen, T.: Guiding image captioning models toward more specific captions. In: ICCV (2023). http://arxiv.org/abs/2307.16686
Leng, S., et al.: Mitigating object hallucinations in large vision-language models through visual contrastive decoding (2023). http://arxiv.org/abs/2311.16922
Li, J., Li, D., Savarese, S., Hoi, S.: BLIP-2: bootstrapping language-image pre-training with frozen image encoders and large language models. arXiv preprint arXiv:2301.12597 (2023)
Li, L.H., et al.: Grounded language-image pre-training. In: CVPR (2022)
Li, X.L., et al.: Contrastive decoding: open-ended text generation as optimization. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers) (2023)
Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48
Liu, H., et al.: LLaVA-next: improved reasoning, OCR, and world knowledge (2024). https://llava-vl.github.io/blog/2024-01-30-llava-next/
Liu, H., Li, C., Wu, Q., Lee, Y.J.: Visual instruction tuning. In: Thirty-seventh Conference on Neural Information Processing Systems (2023). https://openreview.net/forum?id=w0H2xGHlkw
Liu, H., Li, C., Wu, Q., Lee, Y.J.: Visual instruction tuning. Adv. Neural Inf. Process. Syst. 36 (2024)
Liu, S., et al.: Grounding DINO: marrying DINO with grounded pre-training for open-set object detection. arXiv preprint arXiv:2303.05499 (2023)
Liu, Y., Guo, Y., Yin, J., Song, X., Liu, W., Nie, L., Zhang, M.: Answer questions with right image regions: a visual attention regularization approach. ACM Trans. Multimed. Comput. Commun. Appl. (TOMM) 18(4), 1–18 (2022)
Ma, Z., Hong, J., Gul, M.O., Gandhi, M., Gao, I., Krishna, R.: CREPE: can vision-language foundation models reason compositionally? In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10910–10921 (2023)
Mao, J., Huang, J., Toshev, A., Camburu, O.M., Yuille, A.L., Murphy, K.P.: Generation and comprehension of unambiguous object descriptions. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 11–20 (2015). https://api.semanticscholar.org/CorpusID:8745888
O’Brien, S., Lewis, M.: Contrastive decoding improves reasoning in large language models (2023)
Achiam, J., et al.: GPT-4 technical report (2023)
Plummer, B.A., Wang, L., Cervantes, C.M., Caicedo, J.C., Hockenmaier, J., Lazebnik, S.: Flickr30k entities: collecting region-to-phrase correspondences for richer image-to-sentence models. IJCV 123(1), 74–93 (2017)
Radford, A., et al.: Learning transferable visual models from natural language supervision. In: Meila, M., Zhang, T. (eds.) Proceedings of the 38th International Conference on Machine Learning, ICML 2021, 18–24 July 2021, Virtual Event. Proceedings of Machine Learning Research, vol. 139, pp. 8748–8763. PMLR (2021). http://proceedings.mlr.press/v139/radford21a.html
Ray, A., Radenovic, F., Dubey, A., Plummer, B., Krishna, R., Saenko, K.: Cola: a benchmark for compositional text-to-image retrieval. Adv. Neural Inf. Process. Syst. 36 (2024)
Ren, T., et al.: Grounded SAM: assembling open-world models for diverse visual tasks (2024)
Ribeiro, M., Singh, S., Guestrin, C.: “Why should I trust you?”: explaining the predictions of any classifier. In: DeNero, J., Finlayson, M., Reddy, S. (eds.) Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Demonstrations, pp. 97–101. Association for Computational Linguistics, San Diego (2016). https://doi.org/10.18653/v1/N16-3020, https://aclanthology.org/N16-3020
Saharia, C., et al.: Photorealistic text-to-image diffusion models with deep language understanding. In: Oh, A.H., Agarwal, A., Belgrave, D., Cho, K. (eds.) Advances in Neural Information Processing Systems (2022). https://openreview.net/forum?id=08Yk-n5l2Al
Salesforce AI Research: Xgen-mm-phi3-mini-instruct model card (2024). https://huggingface.co/Salesforce/xgen-mm-phi3-mini-instruct-r-v1
Sanchez, G., Fan, H., Spangher, A., Levi, E., Ammanamanchi, P.S., Biderman, S.: Stay on topic with classifier-free guidance. arXiv preprint arXiv:2306.17806 (2023)
Selvaraju, R.R., et al.: Taking a hint: leveraging explanations to make vision and language models more grounded. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2591–2600 (2019)
Shi, W., Han, X., Lewis, M., Tsvetkov, Y., Zettlemoyer, L., tau Yih, S.W.: Trusting your evidence: hallucinate less with context-aware decoding (2023)
Shtedritski, A., Rupprecht, C., Vedaldi, A.: What does clip know about a red circle? Visual prompt engineering for vlms. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 11987–11997 (2023)
Singh, A., et al.: FLAVA: a foundational language and vision alignment model. In: CVPR (2022)
Sun, Z., et al.: Alpha-CLIP: a CLIP model focusing on wherever you want (2023)
Thrush, T., et al.: Winoground: probing vision and language models for visio-linguistic compositionality. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5238–5248 (2022)
Wang, S., et al.: Imagen editor and editbench: advancing and evaluating text-guided image inpainting. In: 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 18359–18369. IEEE Computer Society, Los Alamitos (2023). https://doi.org/10.1109/CVPR52729.2023.01761, https://doi.ieeecomputersociety.org/10.1109/CVPR52729.2023.01761
Wu, J., Mooney, R.: Self-critical reasoning for robust visual question answering. Adv. Neural Inf. Process. Syst. 32 (2019)
Yang, J., Zhang, H., Li, F., Zou, X., Li, C., Gao, J.: Set-of-mark prompting unleashes extraordinary visual grounding in GPT-4V (2023). http://arxiv.org/abs/2310.11441
Yao, Y., Zhang, A., Zhang, Z., Liu, Z., Chua, T.S., Sun, M.: CPT: colorful prompt tuning for pre-trained vision-language models (2021). http://arxiv.org/abs/2109.11797
Yarom, M., et al.: What you see is what you read? Improving text-image alignment evaluation. In: Thirty-seventh Conference on Neural Information Processing Systems (2023). https://openreview.net/forum?id=j5AoleAIru
Ying, Z., Hase, P., Bansal, M.: VisFIS: visual feature importance supervision with right-for-the-right-reason objectives. Adv. Neural. Inf. Process. Syst. 35, 17057–17072 (2022)
Young, P., Lai, A., Hodosh, M., Hockenmaier, J.: From image descriptions to visual denotations: new similarity metrics for semantic inference over event descriptions. Trans. Assoc. Comput. Linguist. 2, 67–78 (2014)
Zellers, R., et al.: MERLOT: multimodal neural script knowledge models. In: NeurIPS (2021). http://arxiv.org/abs/2106.02636
Zhang, H., et al.: GLIPv2: unifying localization and vision-language understanding. arXiv preprint arXiv:2206.05836 (2022)
Zhang, P., Goyal, Y., Summers-Stay, D., Batra, D., Parikh, D.: Yin and Yang: balancing and answering binary visual questions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5014–5022 (2016)
Zhang, S., et al.: GPT4RoI: instruction tuning large language model on region-of-interest (2023)
Zhang, Y., Qian, S., Peng, B., Liu, S., Jia, J.: Prompt highlighter: interactive control for multi-modal LLMs. arXiv preprint arXiv:2312.04302 (2023)
Zhao, L., Deng, Y., Zhang, W., Gu, Q.: Mitigating object hallucination in large vision-language models via classifier-free guidance (2024)
Zou, X., et al.: Segment everything everywhere all at once. In: Thirty-seventh Conference on Neural Information Processing Systems (2023). https://openreview.net/forum?id=UHBrWeFWlL
Acknowledgements
We thank Peter Hase for the thoughtful discussion, and the anonymous reviewers for their feedback. This work was supported by DARPA ECOLE Program No. HR00112390060, NSF-AI Engage Institute DRL-2112635, DARPA Machine Commonsense (MCS) Grant N66001-19-2-4031, ARO Award W911NF2110220, ONR Grant N00014-23-1-2356, and a Bloomberg Data Science Ph.D. Fellowship. The views contained in this article are those of the authors and not of the funding agency.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Wan, D., Cho, J., Stengel-Eskin, E., Bansal, M. (2025). Contrastive Region Guidance: Improving Grounding in Vision-Language Models Without Training. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15137. Springer, Cham. https://doi.org/10.1007/978-3-031-72986-7_12
Download citation
DOI: https://doi.org/10.1007/978-3-031-72986-7_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-72985-0
Online ISBN: 978-3-031-72986-7
eBook Packages: Computer ScienceComputer Science (R0)