Abstract
In this work, we describe a method for large-scale 3D cell-tracking through a segmentation selection approach. The proposed method is effective at tracking cells across large microscopy datasets on two fronts: (i) It can solve problems containing millions of segmentation instances in terabyte-scale 3D+t datasets; (ii) It achieves competitive results with or without deep learning, bypassing the requirement of 3D annotated data, that is scarce in the fluorescence microscopy field. The proposed method computes cell tracks and segments using a hierarchy of segmentation hypotheses and selects disjoint segments by maximizing the overlap between adjacent frames. We show that this method is the first to achieve state-of-the-art in both nuclei- and membrane-based cell tracking by evaluating it on the 2D epithelial cell benchmark and 3D images from the cell tracking challenge. Furthermore, it has a faster integer linear programming formulation, and the framework is flexible, supporting segmentations from individual off-the-shelf cell segmentation models or their combination as an ensemble. The code is available as supplementary material.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aigouy, B., Umetsu, D., Eaton, S.: Segmentation and quantitative analysis of epithelial tissues. In: Drosophila: Methods and Protocols, pp. 227–239 (2016)
Akbaş, C.E., Ulman, V., Maška, M., Jug, F., Kozubek, M.: Automatic fusion of segmentation and tracking labels. In: Leal-Taixé, L., Roth, S. (eds.) ECCV 2018. LNCS, vol. 11134, pp. 446–454. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11024-6_34
Amat, F., et al.: Fast, accurate reconstruction of cell lineages from large-scale fluorescence microscopy data. Nat. Methods 11(9), 951–958 (2014)
Arbelaez, P.: Boundary extraction in natural images using ultrametric contour maps. In: Conference on Computer Vision and Pattern Recognition Workshop, pp. 182–182. IEEE (2006)
Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 33(5), 898–916 (2010)
Bailoni, A., et al.: GASP, a generalized framework for agglomerative clustering of signed graphs and its application to instance segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 11645–11655 (2022)
Ben-Haim, T., Raviv, T.R.: Graph neural network for cell tracking in microscopy videos. In: European Conference on Computer Vision, pp. 610–626. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-19803-8_36
Berg, S., et al.: Ilastik: interactive machine learning for (bio) image analysis. Nat. Methods 16(12), 1226–1232 (2019)
Bise, R., Maeda, Y., Kim, M.h., Kino-Oka, M.: Cell tracking under high confluency conditions by candidate cell region detection-based-association approach. Biomed. Eng. 1004–1010 (2013)
Briggman, K., Denk, W., Seung, S., Helmstaedter, M., Turaga, S.C.: Maximin affinity learning of image segmentation, vol. 22 (2009)
Couprie, C., Grady, L., Najman, L., Talbot, H.: Power watersheds: a new image segmentation framework extending graph cuts, random walker and optimal spanning forest. In: IEEE International Conference on Computer Vision, pp. 731–738 (2009)
Cousty, J., Bertrand, G., Najman, L., Couprie, M.: Watershed cuts: minimum spanning forests and the drop of water principle. IEEE Trans. Pattern Anal. Mach. Intell. 31(8), 1362–1374 (2009)
Deng, R., Shen, C., Liu, S., Wang, H., Liu, X.: Learning to predict crisp boundaries. In: European Conference on Computer Vision, pp. 562–578 (2018)
Dzyubachyk, O., Van Cappellen, W.A., Essers, J., Niessen, W.J., Meijering, E.: Advanced level-set-based cell tracking in time-lapse fluorescence microscopy. IEEE Trans. Med. Imaging 29(3), 852–867 (2010)
Friedman, J.H.: Stochastic gradient boosting. Comput. Stat. Data Anal. 38(4), 367–378 (2002)
Funke, J., Mais, L., Champion, A., Dye, N., Kainmueller, D.: A benchmark for epithelial cell tracking. In: Proceedings of The European Conference on Computer Vision (ECCV) Workshops (2018)
Funke, J., et al.: Large scale image segmentation with structured loss based deep learning for connectome reconstruction. IEEE Trans. Pattern Anal. Mach. Intell. 41(7), 1669–1680 (2018)
Hayashida, J., Bise, R.: Cell tracking with deep learning for cell detection and motion estimation in low-frame-rate. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 397–405. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_44
Hayashida, J., Nishimura, K., Bise, R.: Mpm: joint representation of motion and position map for cell tracking. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 3823–3832 (2020)
Hirsch, P., Malin-Mayor, C., Santella, A., Preibisch, S., Kainmueller, D., Funke, J.: Tracking by weakly-supervised learning and graph optimization for whole-embryo c. elegans lineages. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 25–35. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-16440-8_3
Huisken, J., Swoger, J., Del Bene, F., Wittbrodt, J., Stelzer, E.H.: Optical sectioning deep inside live embryos by selective plane illumination microscopy. Science 305(5686), 1007–1009 (2004)
Januszewski, M., et al.: High-precision automated reconstruction of neurons with flood-filling networks. Nat. Methods 15(8), 605–610 (2018)
Jug, F., Levinkov, E., Blasse, C., Myers, E.W., Andres, B.: Moral lineage tracing. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 5926–5935 (2016)
Kappes, J.H., Speth, M., Andres, B., Reinelt, G., Schn, C.: Globally optimal image partitioning by multicuts. In: Boykov, Y., Kahl, F., Lempitsky, V., Schmidt, F.R. (eds.) EMMCVPR 2011. LNCS, vol. 6819, pp. 31–44. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23094-3_3
Keller, P.J., Schmidt, A.D., Wittbrodt, J., Stelzer, E.H.: Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy. Science 322(5904), 1065–1069 (2008)
Keuper, M., Levinkov, E., Bonneel, N., Lavoué, G., Brox, T., Andres, B.: Efficient decomposition of image and mesh graphs by lifted multicuts. In: IEEE International Conference on Computer Vision, pp. 1751–1759 (2015)
Kiran, B.R., Serra, J.: Global-local optimizations by hierarchical cuts and climbing energies. Pattern Recogn. 47(1), 12–24 (2014)
Lotufo, R.D.A., Falcão, A.X., Zampirolli, F.A.: IFT-watershed from gray-scale marker. In: Conference on Graphics, Patterns and Images (SIBGRAPI), pp. 146–152. IEEE (2002)
Löffler, K., Mikut, R.: Embedtrack–simultaneous cell segmentation and tracking through learning offsets and clustering bandwidths. IEEE Access 10, 77147–77157 (2022). https://doi.org/10.1109/ACCESS.2022.3192880
Magnusson, K.E.: Segmentation and tracking of cells and particles in time-lapse microscopy. Ph.D. thesis, KTH Royal Institute of Technology (2016)
Malin-Mayor, C., et al.: Automated reconstruction of whole-embryo cell lineages by learning from sparse annotations. Nat. Biotechnol. 1–6 (2022)
Maninis, K.K., Pont-Tuset, J., Arbeláez, P., Van Gool, L.: Convolutional oriented boundaries: from image segmentation to high-level tasks. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 819–833 (2017)
Matula, P., Maška, M., Sorokin, D.V., Matula, P., Ortiz-de Solórzano, C., Kozubek, M.: Cell tracking accuracy measurement based on comparison of acyclic oriented graphs. PLoS ONE 10(12), e0144959 (2015)
Meyer, F.: Morphological segmentation revisited. In: Space, Structure and Randomness: Contributions in Honor of Georges Matheron in the Field of Geostatistics, Random Sets and Mathematical Morphology, pp. 315–347 (2005)
Meyer, F., Oliveras Vergés, A., Salembier Clairon, P.J., Vachier, C.: Morphological tools for segmentation: connected operators and watersheds. Annales des télecommunications. Ann. Telecommun. 52(7–8), 366–379 (1997)
Murray, J.I., et al.: Automated analysis of embryonic gene expression with cellular resolution in c. elegans. Nat. Methods 5(8), 703–709 (2008)
Najman, L.: On the equivalence between hierarchical segmentations and ultrametric watersheds. J. Math. Imaging Vision 40(3), 231–247 (2011)
Najman, L., Cousty, J., Perret, B.: Playing with kruskal: algorithms for morphological trees in edge-weighted graphs. In: Hendriks, C.L.L., Borgefors, G., Strand, R. (eds.) ISMM 2013. LNCS, vol. 7883, pp. 135–146. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38294-9_12
Najman, L., Schmitt, M.: Geodesic saliency of watershed contours and hierarchical segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 18(12), 1163–1173 (1996)
Neumann, B., et al.: Phenotypic profiling of the human genome by time-lapse microscopy reveals cell division genes. Nature 464(7289), 721–727 (2010)
Nishimura, K., Hayashida, J., Wang, C., Ker, D.F.E., Bise, R.: Weakly-supervised cell tracking via backward-and-forward propagation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12357, pp. 104–121. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58610-2_7
Nunez-Iglesias, J., Kennedy, R., Parag, T., Shi, J., Chklovskii, D.B.: Machine learning of hierarchical clustering to segment 2d and 3d images. PLoS ONE 8(8), e71715 (2013)
Ouyang, W., et al.: Bioimage model zoo: a community-driven resource for accessible deep learning in bioimage analysis. bioRxiv (2022)
Pape, C., Beier, T., Li, P., Jain, V., Bock, D.D., Kreshuk, A.: Solving large multicut problems for connectomics via domain decomposition. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp. 1–10 (2017)
Payer, C., Štern, D., Neff, T., Bischof, H., Urschler, M.: Instance segmentation and tracking with cosine embeddings and recurrent hourglass networks. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 3–11. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_1
Perret, B., Chierchia, G., Cousty, J., Guimaraes, S.J.F., Kenmochi, Y., Najman, L.: Higra: hierarchical graph analysis. SoftwareX 10, 100335 (2019)
Perret, B., Cousty, J., Guimaraes, S.J.F., Maia, D.S.: Evaluation of hierarchical watersheds. IEEE Trans. Image Process. 27(4), 1676–1688 (2017)
Perret, B., Cousty, J., Guimarães, S.J.F., Kenmochi, Y., Najman, L.: Removing non-significant regions in hierarchical clustering and segmentation. Pattern Recogn. Lett. 128, 433–439 (2019)
Pont-Tuset, J., Arbelaez, P., Barron, J.T., Marques, F., Malik, J.: Multiscale combinatorial grouping for image segmentation and object proposal generation. IEEE Trans. Pattern Anal. Mach. Intell. 39(1), 128–140 (2016)
Rempfler, M., et al.: Efficient algorithms for moral lineage tracing. In: IEEE International Conference on Computer Vision, pp. 4695–4704 (2017)
Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Schiegg, M., Hanslovsky, P., Kausler, B.X., Hufnagel, L., Hamprecht, F.A.: Conservation tracking. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2928–2935 (2013)
Schmidt, U., Weigert, M., Broaddus, C., Myers, G.: Cell detection with star-convex polygons. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 265–273. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_30
Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 888–905 (2000)
Stegmaier, J., et al.: Fast segmentation of stained nuclei in terabyte-scale, time resolved 3d microscopy image stacks. PLoS ONE 9(2), e90036 (2014)
Stelzer, E.H., Strobl, F., Chang, B.J., Preusser, F., Preibisch, S., McDole, K., Fiolka, R.: Light sheet fluorescence microscopy. Nat. Rev. Methods Primers 1(1), 73 (2021)
Stringer, C., Wang, T., Michaelos, M., Pachitariu, M.: Cellpose: a generalist algorithm for cellular segmentation. Nat. Methods 18(1), 100–106 (2021)
Sugawara, K., Çevrim, Ç., Averof, M.: Tracking cell lineages in 3d by incremental deep learning. eLife 11, e69380 (2022)
Tan, M., Le, Q.: Efficientnet: rethinking model scaling for convolutional neural networks. In: International Conference on Machine Learning, pp. 6105–6114 (2019)
Tarjan, R.E.: Efficiency of a good but not linear set union algorithm. J. ACM (JACM) 22(2), 215–225 (1975)
Türetken, E., et al.: Network flow integer programming to track elliptical cells in time-lapse sequences. IEEE Trans. Med. Imaging 36(4), 942–951 (2016)
Ulman, V., et al.: An objective comparison of cell-tracking algorithms. Nat. Methods 14(12), 1141–1152 (2017)
Virtanen, P., et al.: Scipy 1.0: fundamental algorithms for scientific computing in python. Nat. Methods 17(3), 261–272 (2020)
Van der Walt, S., et al.: scikit-image: image processing in python. PeerJ 2, e453 (2014)
Wolny, A., et al.: Accurate and versatile 3d segmentation of plant tissues at cellular resolution. eLife 9, e57613 (2020)
Xie, S., Tu, Z.: Holistically-nested edge detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1395–1403 (2015)
Yang, B., et al.: Daxi–high-resolution, large imaging volume and multi-view single-objective light-sheet microscopy. Nat. Methods 19(4), 461–469 (2022)
Yarkony, J., Ihler, A., Fowlkes, C.C.: Fast planar correlation clustering for image segmentation. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7577, pp. 568–581. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33783-3_41
Yoo, A.B., Jette, M.A., Grondona, M.: SLURM: simple linux utility for resource management. In: Feitelson, D., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP 2003. LNCS, vol. 2862, pp. 44–60. Springer, Heidelberg (2003). https://doi.org/10.1007/10968987_3
Zimmer, C., Labruyere, E., Meas-Yedid, V., Guillén, N., Olivo-Marin, J.C.: Segmentation and tracking of migrating cells in videomicroscopy with parametric active contours: a tool for cell-based drug testing. IEEE Trans. Med. Imaging 21(10), 1212–1221 (2002)
Acknowledgements
We thank Ahmed Abbas, Ahmet Can Solak, Alexandre Falcão, Guillaume Le Treut, Ilan Theodoro, Laurent Najman, Paul Swoboda, Sandy Schmid, and Teun Huijben for the discussions regarding this work and Chan Zuckerberg Biohub for the support.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Bragantini, J., Lange, M., Royer, L. (2025). Large-Scale Multi-hypotheses Cell Tracking Using Ultrametric Contours Maps. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15137. Springer, Cham. https://doi.org/10.1007/978-3-031-72986-7_3
Download citation
DOI: https://doi.org/10.1007/978-3-031-72986-7_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-72985-0
Online ISBN: 978-3-031-72986-7
eBook Packages: Computer ScienceComputer Science (R0)