Abstract
The complex traffic environment and various weather conditions make the collection of LiDAR data expensive and challenging. Achieving high-quality and controllable LiDAR data generation is urgently needed, controlling with text is a common practice, but there is little research in this field. To this end, we propose Text2LiDAR, the first efficient, diverse, and text-controllable LiDAR data generation model. Specifically, we design an equirectangular transformer architecture, utilizing the designed equirectangular attention to capture LiDAR features in a manner with data characteristics. Then, we design a control-signal embedding injector to efficiently integrate control signals through the global-to-focused attention mechanism. Additionally, we devise a frequency modulator to assist the model in recovering high-frequency details, ensuring the clarity of the generated point cloud. To foster development in the field and optimize text-controlled generation performance, we construct nuLiDARtext which offers diverse text descriptors for 34,149 LiDAR point clouds from 850 scenes. Experiments on uncontrolled and text-controlled generation in various forms on KITTI-360 and nuScenes datasets demonstrate the superiority of our approach. The project can be found at https://github.com/wuyang98/Text2LiDAR.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Achlioptas, P., Diamanti, O., Mitliagkas, I., Guibas, L.: Learning representations and generative models for 3D point clouds. In: International Conference on Machine Learning, pp. 40–49. PMLR (2018)
Bakhshi, R., Sandborn, P.: Maximizing the returns of LIDAR systems in wind farms for yaw error correction applications. Wind Energy 23(6), 1408–1421 (2020)
Behley, J., et al.: SemanticKITTI: a dataset for semantic scene understanding of LiDAR sequences. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) (2019)
Caccia, L., Van Hoof, H., Courville, A., Pineau, J.: Deep generative modeling of LiDAR data. In: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5034–5040. IEEE (2019)
Caesar, H., et al.: nuScenes: a multimodal dataset for autonomous driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11621–11631 (2020)
Chai, Y., et al.: To the point: efficient 3D object detection in the range image with graph convolution kernels. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16000–16009 (2021)
Chen, K., Choy, C.B., Savva, M., Chang, A.X., Funkhouser, T., Savarese, S.: Text2Shape: generating shapes from natural language by learning joint embeddings. In: Jawahar, C.V., Li, H., Mori, G., Schindler, K. (eds.) ACCV 2018, Part III. LNCS, vol. 11363, pp. 100–116. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20893-6_7
Chen, R., Chen, Y., Jiao, N., Jia, K.: Fantasia3D: disentangling geometry and appearance for high-quality text-to-3D content creation. arXiv preprint arXiv:2303.13873 (2023)
Chen, Z., Wang, F., Liu, H.: Text-to-3D using gaussian splatting. arXiv preprint arXiv:2309.16585 (2023)
Cho, J., Zala, A., Bansal, M.: DALL-Eval: probing the reasoning skills and social biases of text-to-image generation models. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3043–3054 (2023)
Crowson, K., et al.: VQGAN-CLIP: open domain image generation and editing with natural language guidance. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13697, pp. 88–105. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19836-6_6
Cui, C., et al.: A survey on multimodal large language models for autonomous driving. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 958–979 (2024)
Deliry, S.I., Avdan, U.: Accuracy of unmanned aerial systems photogrammetry and structure from motion in surveying and mapping: a review. J. Indian Soc. Remote Sens. 49(8), 1997–2017 (2021)
Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., Koltun, V.: CARLA: an open urban driving simulator. In: Conference on Robot Learning, pp. 1–16. PMLR (2017)
Dreissig, M., Scheuble, D., Piewak, F., Boedecker, J.: Survey on LiDAR perception in adverse weather conditions. arXiv preprint arXiv:2304.06312 (2023)
Fu, M., Liu, H., Yu, Y., Chen, J., Wang, K.: DW-GAN: a discrete wavelet transform GAN for nonhomogeneous dehazing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 203–212 (2021)
Ge, S., Park, T., Zhu, J.Y., Huang, J.B.: Expressive text-to-image generation with rich text. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 7545–7556 (2023)
Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? The KITTI vision benchmark suite. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 3354–3361. IEEE (2012)
Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, vol. 27 (2014)
Gulino, C., et al.: Waymax: an accelerated, data-driven simulator for large-scale autonomous driving research. In: Advances in Neural Information Processing Systems, vol. 36 (2024)
Gupta, A., Dollar, P., Girshick, R.: LVIS: a dataset for large vocabulary instance segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5356–5364 (2019)
Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531 (2015)
Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. In: Advances in Neural Information Processing Systems, vol. 33, pp. 6840–6851 (2020)
Hu, E.J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S., Wang, L., Chen, W.: Lora: Low-rank adaptation of large language models. arXiv preprint arXiv:2106.09685 (2021)
Hui, L., Xu, R., Xie, J., Qian, J., Yang, J.: Progressive point cloud deconvolution generation network. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020, Part XV. LNCS, vol. 12360, pp. 397–413. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58555-6_24
Janai, J., Güney, F., Behl, A., Geiger, A., et al.: Computer vision for autonomous vehicles: problems, datasets and state of the art. Found. Trends® Comput. Graph. Vis. 12(1–3), 1–308 (2020)
Kasten, Y., Rahamim, O., Chechik, G.: Point cloud completion with pretrained text-to-image diffusion models. In: Advances in Neural Information Processing Systems, vol. 36 (2024)
Kerbl, B., Kopanas, G., Leimkühler, T., Drettakis, G.: 3D Gaussian splatting for real-time radiance field rendering. ACM Trans. Graph. 42(4), 139-1 (2023)
Kim, Y., Lee, J., Kim, J.H., Ha, J.W., Zhu, J.Y.: Dense text-to-image generation with attention modulation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 7701–7711 (2023)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114 (2013)
Klokov, R., Boyer, E., Verbeek, J.: Discrete point flow networks for efficient point cloud generation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12368, pp. 694–710. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58592-1_41
Kong, L., et al.: Robo3D: towards robust and reliable 3D perception against corruptions. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 19994–20006 (2023)
Kuo, W., Cui, Y., Gu, X., Piergiovanni, A., Angelova, A.: F-VLM: open-vocabulary object detection upon frozen vision and language models. arXiv preprint arXiv:2209.15639 (2022)
Li, Z., et al.: PromptKD: unsupervised prompt distillation for vision-language models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 26617–26626 (2024)
Li, Z., et al.: Curriculum temperature for knowledge distillation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 37, pp. 1504–1512 (2023)
Liao, Y., Xie, J., Geiger, A.: KITTI-360: a novel dataset and benchmarks for urban scene understanding in 2D and 3D. IEEE Trans. Pattern Anal. Mach. Intell. 45(3), 3292–3310 (2022)
Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, Part V. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48
Liu, Z., Wang, Y., Qi, X., Fu, C.W.: Towards implicit text-guided 3D shape generation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 17896–17906 (2022)
Lugmayr, A., Danelljan, M., Romero, A., Yu, F., Timofte, R., Van Gool, L.: RePaint: inpainting using denoising diffusion probabilistic models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11461–11471 (2022)
Luo, S., Hu, W.: Diffusion probabilistic models for 3D point cloud generation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2837–2845 (2021)
Manivasagam, S., et al.: LiDARsim: realistic LiDAR simulation by leveraging the real world. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11167–11176 (2020)
Meyer, G.P., Laddha, A., Kee, E., Vallespi-Gonzalez, C., Wellington, C.K.: LaserNet: an efficient probabilistic 3D object detector for autonomous driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12677–12686 (2019)
Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: NeRF: representing scenes as neural radiance fields for view synthesis. Commun. ACM 65(1), 99–106 (2021)
Milioto, A., Vizzo, I., Behley, J., Stachniss, C.: RangeNet++: fast and accurate LiDAR semantic segmentation. In: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4213–4220. IEEE (2019)
Mohsan, S.A.H., Othman, N.Q.H., Li, Y., Alsharif, M.H., Khan, M.A.: Unmanned aerial vehicles (UAVs): practical aspects, applications, open challenges, security issues, and future trends. Intell. Serv. Robot. 16(1), 109–137 (2023)
Nakashima, K., Iwashita, Y., Kurazume, R.: Generative range imaging for learning scene priors of 3D LiDAR data. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 1256–1266 (2023)
Nakashima, K., Kurazume, R.: Learning to drop points for LiDAR scan synthesis. In: 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 222–229. IEEE (2021)
Nakashima, K., Kurazume, R.: LiDAR data synthesis with denoising diffusion probabilistic models. arXiv preprint arXiv:2309.09256 (2023)
Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems, vol. 32 (2019)
Piroli, A., Dallabetta, V., Kopp, J., Walessa, M., Meissner, D., Dietmayer, K.: Energy-based detection of adverse weather effects in LiDAR data. IEEE Robot. Autom. Lett. 8(7), 4322–4329 (2023)
Poole, B., Jain, A., Barron, J.T., Mildenhall, B.: DreamFusion: Text-to-3D using 2D diffusion. arXiv preprint arXiv:2209.14988 (2022)
Qi, C.R., Su, H., Mo, K., Guibas, L.J.: PointNet: deep learning on point sets for 3D classification and segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 652–660 (2017)
Radford, A., et al.: Learning transferable visual models from natural language supervision. In: International Conference on Machine Learning, pp. 8748–8763. PMLR (2021)
Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., Chen, M.: Hierarchical text-conditional image generation with CLIP latents. arXiv preprint arXiv:2204.06125 (2022)
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015, Part III. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Saharia, C., et al.: Photorealistic text-to-image diffusion models with deep language understanding. In: Advances in Neural Information Processing Systems, vol. 35, pp. 36479–36494 (2022)
Sauer, A., Chitta, K., Müller, J., Geiger, A.: Projected GANs converge faster. In: Advances in Neural Information Processing Systems, vol. 34, pp. 17480–17492 (2021)
Schubert, S., Neubert, P., Pöschmann, J., Protzel, P.: Circular convolutional neural networks for panoramic images and laser data. In: 2019 IEEE Intelligent Vehicles Symposium (IV), pp. 653–660. IEEE (2019)
Schuhmann, C., et al.: LAION-5B: an open large-scale dataset for training next generation image-text models. In: Advances in Neural Information Processing Systems, vol. 35, pp. 25278–25294 (2022)
Song, Y., Ermon, S.: Generative modeling by estimating gradients of the data distribution. In: Advances in Neural Information Processing Systems, vol. 32 (2019)
Tancik, M., et al.: Fourier features let networks learn high frequency functions in low dimensional domains. In: Advances in Neural Information Processing Systems, vol. 33, pp. 7537–7547 (2020)
Tyszkiewicz, M.J., Fua, P., Trulls, E.: GECCO: geometrically-conditioned point diffusion models. arXiv preprint arXiv:2303.05916 (2023)
Valsesia, D., Fracastoro, G., Magli, E.: Learning localized generative models for 3D point clouds via graph convolution. In: International Conference on Learning Representations (2018)
Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)
Wang, J., Yuan, H., Chen, D., Zhang, Y., Wang, X., Zhang, S.: ModelScope text-to-video technical report. arXiv preprint arXiv:2308.06571 (2023)
Wang, Y., et al.: Multi-modal 3D object detection in autonomous driving: a survey. Int. J. Comput. Vis. 131(8), 2122–2152 (2023)
Wang, Z., Liu, W., He, Q., Wu, X., Yi, Z.: CLIP-GEN: language-free training of a text-to-image generator with CLIP. arXiv preprint arXiv:2203.00386 (2022)
Wang, Z.J., Montoya, E., Munechika, D., Yang, H., Hoover, B., Chau, D.H.: DiffusionDB: a large-scale prompt gallery dataset for text-to-image generative models. arXiv preprint arXiv:2210.14896 (2022)
Wen, C., Yu, B., Tao, D.: Learning progressive point embeddings for 3D point cloud generation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10266–10275 (2021)
Wu, J.Z., et al.: Tune-A-Video: one-shot tuning of image diffusion models for text-to-video generation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 7623–7633 (2023)
Wu, L., et al.: Fast point cloud generation with straight flows. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9445–9454 (2023)
Wu, Z., Wang, Y., Feng, M., Xie, H., Mian, A.: Sketch and text guided diffusion model for colored point cloud generation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8929–8939 (2023)
Xiang, P., et al.: Snowflake point deconvolution for point cloud completion and generation with skip-transformer. IEEE Trans. Pattern Anal. Mach. Intell. 45(5), 6320–6338 (2022)
Xu, J., et al.: ImageReward: learning and evaluating human preferences for text-to-image generation. In: Advances in Neural Information Processing Systems, vol. 36 (2024)
Xu, Z., Xing, S., Sangineto, E., Sebe, N.: SpectralCLIP: preventing artifacts in text-guided style transfer from a spectral perspective. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 5121–5130 (2024)
Xue, M., He, J., He, Y., Liu, Z., Wang, W., Zhou, M.: Low-light image enhancement via CLIP-Fourier guided wavelet diffusion. arXiv preprint arXiv:2401.03788 (2024)
Yan, Z., Li, X., Wang, K., Zhang, Z., Li, J., Yang, J.: Multi-modal masked pre-training for monocular panoramic depth completion. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13661, pp. 378–395. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19769-7_22
Yan, Z., et al.: Tri-perspective view decomposition for geometry-aware depth completion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4874–4884 (2024)
Yan, Z., Wang, K., Li, X., Zhang, Z., Li, J., Yang, J.: RigNet: repetitive image guided network for depth completion. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13687, pp. 214–230. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19812-0_13
Yang, G., Huang, X., Hao, Z., Liu, M.Y., Belongie, S., Hariharan, B.: PointFlow: 3D point cloud generation with continuous normalizing flows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4541–4550 (2019)
Yang, X., Zhou, D., Feng, J., Wang, X.: Diffusion probabilistic model made slim. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 22552–22562 (2023)
Yin, H., Lin, Z., Yeoh, J.K.: Semantic localization on BIM-generated maps using a 3D LiDAR sensor. Autom. Constr. 146, 104641 (2023)
Yuan, L., et al.: Tokens-to-Token ViT: training vision transformers from scratch on ImageNet. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 558–567 (2021)
Zamorski, M., et al.: Adversarial autoencoders for compact representations of 3D point clouds. Comput. Vis. Image Underst. 193, 102921 (2020)
Zhou, Y., et al.: Towards language-free training for text-to-image generation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 17907–17917 (2022)
Zou, Q., Sun, Q., Chen, L., Nie, B., Li, Q.: A comparative analysis of LiDAR SLAM-based indoor navigation for autonomous vehicles. IEEE Trans. Intell. Transp. Syst. 23(7), 6907–6921 (2021)
Zyrianov, V., Zhu, X., Wang, S.: Learning to generate realistic LiDAR point clouds. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13683, pp. 17–35. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20050-2_2
Acknowledgements
We are very grateful for the reviewers’ critical and constructive comments. This work was supported in part by the NSFC under Grant No. 62276141, 62176124, 62276144, 62361166670.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Wu, Y., Zhang, K., Qian, J., Xie, J., Yang, J. (2025). Text2LiDAR: Text-Guided LiDAR Point Cloud Generation via Equirectangular Transformer. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15114. Springer, Cham. https://doi.org/10.1007/978-3-031-72992-8_17
Download citation
DOI: https://doi.org/10.1007/978-3-031-72992-8_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-72991-1
Online ISBN: 978-3-031-72992-8
eBook Packages: Computer ScienceComputer Science (R0)