Skip to main content

Rate-Distortion-Cognition Controllable Versatile Neural Image Compression

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15114))

Included in the following conference series:

  • 302 Accesses

Abstract

Recently, the field of Image Coding for Machines (ICM) has garnered heightened interest and significant advances thanks to the rapid progress of learning-based techniques for image compression and analysis. Previous studies often require training separate codecs to support various bitrate levels, machine tasks, and networks, thus lacking both flexibility and practicality. To address these challenges, we propose a rate-distortion-cognition controllable versatile image compression, which method allows the users to adjust the bitrate (i.e., Rate), image reconstruction quality (i.e., Distortion), and machine task accuracy (i.e., Cognition) with a single neural model, achieving ultra-controllability. Specifically, we first introduce a cognition-oriented loss in the primary compression branch to train a codec for diverse machine tasks. This branch attains variable bitrate by regulating quantization degree through the latent code channels. To further enhance the quality of the reconstructed images, we employ an auxiliary branch to supplement residual information with a scalable bitstream. Ultimately, two branches use a ‘\(\beta x + (1 - \beta ) y\)’ interpolation strategy to achieve a balanced cognition-distortion trade-off. Extensive experiments demonstrate that our method yields satisfactory ICM performance and flexible Rate-Distortion-Cognition controlling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Agustsson, E., Minnen, D., Toderici, G., Mentzer, F.: Multi-realism image compression with a conditional generator. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 22324–22333 (2023)

    Google Scholar 

  2. Agustsson, E., Tschannen, M., Mentzer, F., Timofte, R., Gool, L.V.: Generative adversarial networks for extreme learned image compression. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 221–231 (2019)

    Google Scholar 

  3. Akbari, M., Liang, J., Han, J.: DSSLIC: deep semantic segmentation-based layered image compression. In: ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2042–2046. IEEE (2019)

    Google Scholar 

  4. Babenko, A., Slesarev, A., Chigorin, A., Lempitsky, V.: Neural codes for image retrieval. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 584–599. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_38

    Chapter  Google Scholar 

  5. Badrinarayanan, V., Kendall, A., Cipolla, R.: SegNet: a deep convolutional encoder-decoder architecture for image segmentation. TPAMI 39(12), 2481–2495 (2017)

    Article  Google Scholar 

  6. Ballé, J., Laparra, V., Simoncelli, E.P.: End-to-end optimized image compression. In: ICLR (2017)

    Google Scholar 

  7. Bjontegaard, G.: Calculation of average PSNR differences between RD-curves. In: VCEG-M33 (2001)

    Google Scholar 

  8. Blau, Y., Michaeli, T.: Rethinking lossy compression: the rate-distortion-perception tradeoff. In: International Conference on Machine Learning. pp, 675–685. PMLR (2019)

    Google Scholar 

  9. Bross, B., et al.: Overview of the versatile video coding (VVC) standard and its applications. TCSVT 31, 3736–3764 (2021)

    Google Scholar 

  10. Caron, M., et al.: Emerging properties in self-supervised vision transformers. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9650–9660 (2021)

    Google Scholar 

  11. Chamain, L.D., Racapé, F., Bégaint, J., Pushparaja, A., Feltman, S.: End-to-end optimized image compression for machines, a study. In: 2021 Data Compression Conference (DCC), pp. 163–172. IEEE (2021)

    Google Scholar 

  12. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. TPAMI 40(4), 834–848 (2017)

    Article  Google Scholar 

  13. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: ICML, pp. 1597–1607. PMLR (2020)

    Google Scholar 

  14. Chen, Y.H., Weng, Y.C., Kao, C.H., Chien, C., Chiu, W.C., Peng, W.H.: Transtic: transferring transformer-based image compression from human perception to machine perception. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 23297–23307 (2023)

    Google Scholar 

  15. Chen, Z., Fan, K., Wang, S., Duan, L.Y., Lin, W., Kot, A.: Lossy intermediate deep learning feature compression and evaluation. In: ACM MM, pp. 2414–2422 (2019)

    Google Scholar 

  16. Chen, Z., Fan, K., Wang, S., Duan, L., Lin, W., Kot, A.C.: Toward intelligent sensing: intermediate deep feature compression. TIP 29, 2230–2243 (2019)

    Google Scholar 

  17. Cheng, Z., Sun, H., Takeuchi, M., Katto, J.: Learned image compression with discretized gaussian mixture likelihoods and attention modules. In: CVPR, pp. 7939–7948 (2020)

    Google Scholar 

  18. Choi, H., Bajić, I.V.: Scalable image coding for humans and machines. IEEE Trans. Image Process. 31, 2739–2754 (2022)

    Article  Google Scholar 

  19. Choi, Y., El-Khamy, M., Lee, J.: Variable rate deep image compression with a conditional autoencoder. In: ICCV, pp. 3146–3154 (2019)

    Google Scholar 

  20. Cui, Z., Wang, J., Bai, B., Guo, T., Feng, Y.: G-vae: a continuously variable rate deep image compression framework. arXiv preprint arXiv:2003.02012 (2020)

  21. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. ICLR (2020)

    Google Scholar 

  22. Duan, L.Y., et al.: Overview of the MPEG-CDVS standard. TIP 25(1), 179–194 (2015)

    MathSciNet  Google Scholar 

  23. Duan, L.Y., et al.: Compact descriptors for video analysis: the emerging MPEG standard. IEEE Multimedia 26(2), 44–54 (2018)

    Article  Google Scholar 

  24. Duan, L., Liu, J., Yang, W., Huang, T., Gao, W.: Video coding for machines: a paradigm of collaborative compression and intelligent analytics. TIP 29, 8680–8695 (2020)

    Google Scholar 

  25. Feng, R., et al.: Image coding for machines with omnipotent feature learning. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13697, pp. 510–528. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19836-6_29

    Chapter  Google Scholar 

  26. Feng, R., Liu, J., Jin, X., Pan, X., Sun, H., Chen, Z.: Prompt-ICM: a unified framework towards image coding for machines with task-driven prompts. arXiv preprint arXiv:2305.02578 (2023)

  27. Gao, W., et al.: Digital retina: a way to make the city brain more efficient by visual coding. IEEE Trans. Circ. Syst. Video Technol. 31(11), 4147–4161 (2021)

    Article  Google Scholar 

  28. Han, K., Xiao, A., Wu, E., Guo, J., Xu, C., Wang, Y.: Transformer in transformer. NeurIPS 34, 15908–15919 (2021)

    Google Scholar 

  29. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: CVPR, pp. 9729–9738 (2020)

    Google Scholar 

  30. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)

    Google Scholar 

  31. He, T., Sun, S., Guo, Z., Chen, Z.: Beyond coding: detection-driven image compression with semantically structured bit-stream. In: 2019 Picture Coding Symposium (PCS), pp. 1–5. IEEE (2019)

    Google Scholar 

  32. Hu, Y., et al.: Planning-oriented autonomous driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 17853–17862 (2023)

    Google Scholar 

  33. Hu, Y., Yang, S., Yang, W., Duan, L.Y., Liu, J.: Towards coding for human and machine vision: a scalable image coding approach. In: 2020 IEEE International Conference on Multimedia and Expo (ICME), pp. 1–6. IEEE (2020)

    Google Scholar 

  34. Iwai, S., Miyazaki, T., Omachi, S.: Controlling rate, distortion, and realism: towards a single comprehensive neural image compression model. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 2900–2909 (2024)

    Google Scholar 

  35. Jia, M., et al.: Visual prompt tuning. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13693, pp. 709–727. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19827-4_41

    Chapter  Google Scholar 

  36. Jin, X., Feng, R., Sun, S., Feng, R., He, T., Chen, Z.: Semantical video coding: instill static-dynamic clues into structured bitstream for AI tasks. J. Vis. Commun. Image Represent. 93, 103816 (2023)

    Article  Google Scholar 

  37. Johnston, N., et al.: Improved lossy image compression with priming and spatially adaptive bit rates for recurrent networks. In: CVPR, pp. 4385–4393 (2018)

    Google Scholar 

  38. Körber, N., Kromer, E., Siebert, A., Hauke, S., Mueller-Gritschneder, D.: Egic: enhanced low-bit-rate generative image compression guided by semantic segmentation. arXiv preprint arXiv:2309.03244 (2023)

  39. Le, N., Zhang, H., Cricri, F., Ghaznavi-Youvalari, R., Rahtu, E.: Image coding for machines: an end-to-end learned approach. In: ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1590–1594. IEEE (2021)

    Google Scholar 

  40. Li, H., Li, S., Dai, W., Li, C., Zou, J., Xiong, H.: Frequency-aware transformer for learned image compression. arXiv preprint arXiv:2310.16387 (2023)

  41. Li, H., Li, S., Ding, S., Dai, W., Cao, M., Li, C., Zou, J., Xiong, H.: Image compression for machine and human vision with spatial-frequency adaptation. In: ECCV. Springer (2024)

    Google Scholar 

  42. Li, X., Shi, J., Chen, Z.: Task-driven semantic coding via reinforcement learning. TIP 30, 6307–6320 (2021)

    Google Scholar 

  43. Li, Y., Mao, H., Girshick, R., He, K.: Exploring plain vision transformer backbones for object detection. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13699, pp. 280–296. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20077-9_17

    Chapter  Google Scholar 

  44. Liu, J., Sun, H., Katto, J.: Semantic segmentation in learned compressed domain. In: 2022 Picture Coding Symposium (PCS), pp. 181–185. IEEE (2022)

    Google Scholar 

  45. Liu, J., Sun, H., Katto, J.: Learned image compression with mixed transformer-CNN architectures. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14388–14397 (2023)

    Google Scholar 

  46. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: CVPR, pp. 3431–3440 (2015)

    Google Scholar 

  47. Lu, G., Ge, X., Zhong, T., Geng, J., Hu, Q.: Preprocessing enhanced image compression for machine vision. arXiv preprint arXiv:2206.05650 (2022)

  48. Lu, M., Guo, P., Shi, H., Cao, C., Ma, Z.: Transformer-based image compression. arXiv preprint arXiv:2111.06707 (2021)

  49. Ma, H., Liu, D., Yan, N., Li, H., Wu, F.: End-to-end optimized versatile image compression with wavelet-like transform. IEEE Trans. Pattern Anal. Mach. Intell. 44(3), 1247–1263 (2020)

    Article  Google Scholar 

  50. Ma, S., Zhang, X., Wang, S., Zhang, X., Jia, C., Wang, S.: Joint feature and texture coding: toward smart video representation via front-end intelligence. TCSVT 29(10), 3095–3105 (2018)

    Google Scholar 

  51. Mentzer, F., Agustsson, E., Tschannen, M., Timofte, R., Van Gool, L.: Conditional probability models for deep image compression. In: CVPR, pp. 4394–4402 (2018)

    Google Scholar 

  52. Mentzer, F., Toderici, G., Tschannen, M., Agustsson, E.: High-fidelity generative image compression. arXiv preprint arXiv:2006.09965 (2020)

  53. Minnen, D., Ballé, J., Toderici, G.: Joint autoregressive and hierarchical priors for learned image compression. In: NeurIPS (2018)

    Google Scholar 

  54. Rabbani, M., Joshi, R.: An overview of the JPEG 2000 still image compression standard. Signal Process. Image Commun. 17(1), 3–48 (2002)

    Article  Google Scholar 

  55. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: Unified, real-time object detection. In: CVPR, pp. 779–788 (2016)

    Google Scholar 

  56. Redmon, J., Farhadi, A.: Yolo9000: better, faster, stronger. In: CVPR, pp. 7263–7271 (2017)

    Google Scholar 

  57. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. NeurIPS 28, 91–99 (2015)

    Google Scholar 

  58. Singh, S., Abu-El-Haija, S., Johnston, N., Ballé, J., Shrivastava, A., Toderici, G.: End-to-end learning of compressible features. In: 2020 IEEE International Conference on Image Processing (ICIP), pp. 3349–3353. IEEE (2020)

    Google Scholar 

  59. Song, M., Choi, J., Han, B.: Variable-rate deep image compression through spatially-adaptive feature transform. In: ICCV, pp. 2380–2389 (2021)

    Google Scholar 

  60. Sullivan, G.J., Ohm, J.R., Han, W.J., Wiegand, T.: Overview of the high efficiency video coding (HEVC) standard. TCSVT 22(12), 1649–1668 (2012)

    Google Scholar 

  61. Sun, S., He, T., Chen, Z.: Semantic structured image coding framework for multiple intelligent applications. TCSVT 31, 3631–3642 (2020)

    Google Scholar 

  62. Terhörst, P., et al.: Qmagface: simple and accurate quality-aware face recognition. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 3484–3494 (2023)

    Google Scholar 

  63. Toderici, G., et al.: Full resolution image compression with recurrent neural networks. In: CVPR, pp. 5306–5314 (2017)

    Google Scholar 

  64. Wallace, G.K.: The JPEG still picture compression standard. IEEE Trans. Consum. Electron. 38(1), xviii–xxxiv (1992)

    Google Scholar 

  65. Wang, S., et al.: Towards analysis-friendly face representation with scalable feature and texture compression. TMM 24, 3169–3181 (2021)

    Google Scholar 

  66. Wiegand, T., Sullivan, G.J., Bjontegaard, G., Luthra, A.: Overview of the H. 264/AVC video coding standard. TCSVT 13(7), 560–576 (2003)

    Google Scholar 

  67. Wu, Y., Kirillov, A., Massa, F., Lo, W.Y., Girshick, R.: Detectron2 (2019). https://github.com/facebookresearch/detectron2

  68. Xie, E., Wang, W., Yu, Z., Anandkumar, A., Alvarez, J.M., Luo, P.: SegFormer: simple and efficient design for semantic segmentation with transformers. NeurIPS 34, 12077–12090 (2021)

    Google Scholar 

  69. Yan, F.F., Hou, F., Lu, Z.L., Hu, X., Huang, C.B.: Efficient characterization and classification of contrast sensitivity functions in aging. Sci. Rep. 7(1), 5045 (2017)

    Article  Google Scholar 

  70. Yang, F., Herranz, L., Van De Weijer, J., Guitián, J.A.I., López, A.M., Mozerov, M.G.: Variable rate deep image compression with modulated autoencoder. IEEE Signal Process. Lett. 27, 331–335 (2020)

    Article  Google Scholar 

  71. Yang, R., Mandt, S.: Lossy image compression with conditional diffusion models. arXiv preprint arXiv:2209.06950 (2022)

  72. Zheng, S., et al.: Rethinking semantic segmentation from a sequence-to-sequence perspective with transformers. In: CVPR, pp. 6881–6890 (2021)

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by NSFC 62302246 and ZJNSFC under Grant LQ23F010008, and supported by High Performance Computing Center at Eastern Institute of Technology, Ningbo, and Ningbo Institute of Digital Twin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Jin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, J. et al. (2025). Rate-Distortion-Cognition Controllable Versatile Neural Image Compression. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15114. Springer, Cham. https://doi.org/10.1007/978-3-031-72992-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72992-8_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72991-1

  • Online ISBN: 978-3-031-72992-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics