Abstract
Recently, the field of Image Coding for Machines (ICM) has garnered heightened interest and significant advances thanks to the rapid progress of learning-based techniques for image compression and analysis. Previous studies often require training separate codecs to support various bitrate levels, machine tasks, and networks, thus lacking both flexibility and practicality. To address these challenges, we propose a rate-distortion-cognition controllable versatile image compression, which method allows the users to adjust the bitrate (i.e., Rate), image reconstruction quality (i.e., Distortion), and machine task accuracy (i.e., Cognition) with a single neural model, achieving ultra-controllability. Specifically, we first introduce a cognition-oriented loss in the primary compression branch to train a codec for diverse machine tasks. This branch attains variable bitrate by regulating quantization degree through the latent code channels. To further enhance the quality of the reconstructed images, we employ an auxiliary branch to supplement residual information with a scalable bitstream. Ultimately, two branches use a ‘\(\beta x + (1 - \beta ) y\)’ interpolation strategy to achieve a balanced cognition-distortion trade-off. Extensive experiments demonstrate that our method yields satisfactory ICM performance and flexible Rate-Distortion-Cognition controlling.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Agustsson, E., Minnen, D., Toderici, G., Mentzer, F.: Multi-realism image compression with a conditional generator. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 22324–22333 (2023)
Agustsson, E., Tschannen, M., Mentzer, F., Timofte, R., Gool, L.V.: Generative adversarial networks for extreme learned image compression. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 221–231 (2019)
Akbari, M., Liang, J., Han, J.: DSSLIC: deep semantic segmentation-based layered image compression. In: ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2042–2046. IEEE (2019)
Babenko, A., Slesarev, A., Chigorin, A., Lempitsky, V.: Neural codes for image retrieval. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 584–599. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_38
Badrinarayanan, V., Kendall, A., Cipolla, R.: SegNet: a deep convolutional encoder-decoder architecture for image segmentation. TPAMI 39(12), 2481–2495 (2017)
Ballé, J., Laparra, V., Simoncelli, E.P.: End-to-end optimized image compression. In: ICLR (2017)
Bjontegaard, G.: Calculation of average PSNR differences between RD-curves. In: VCEG-M33 (2001)
Blau, Y., Michaeli, T.: Rethinking lossy compression: the rate-distortion-perception tradeoff. In: International Conference on Machine Learning. pp, 675–685. PMLR (2019)
Bross, B., et al.: Overview of the versatile video coding (VVC) standard and its applications. TCSVT 31, 3736–3764 (2021)
Caron, M., et al.: Emerging properties in self-supervised vision transformers. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9650–9660 (2021)
Chamain, L.D., Racapé, F., Bégaint, J., Pushparaja, A., Feltman, S.: End-to-end optimized image compression for machines, a study. In: 2021 Data Compression Conference (DCC), pp. 163–172. IEEE (2021)
Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. TPAMI 40(4), 834–848 (2017)
Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: ICML, pp. 1597–1607. PMLR (2020)
Chen, Y.H., Weng, Y.C., Kao, C.H., Chien, C., Chiu, W.C., Peng, W.H.: Transtic: transferring transformer-based image compression from human perception to machine perception. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 23297–23307 (2023)
Chen, Z., Fan, K., Wang, S., Duan, L.Y., Lin, W., Kot, A.: Lossy intermediate deep learning feature compression and evaluation. In: ACM MM, pp. 2414–2422 (2019)
Chen, Z., Fan, K., Wang, S., Duan, L., Lin, W., Kot, A.C.: Toward intelligent sensing: intermediate deep feature compression. TIP 29, 2230–2243 (2019)
Cheng, Z., Sun, H., Takeuchi, M., Katto, J.: Learned image compression with discretized gaussian mixture likelihoods and attention modules. In: CVPR, pp. 7939–7948 (2020)
Choi, H., Bajić, I.V.: Scalable image coding for humans and machines. IEEE Trans. Image Process. 31, 2739–2754 (2022)
Choi, Y., El-Khamy, M., Lee, J.: Variable rate deep image compression with a conditional autoencoder. In: ICCV, pp. 3146–3154 (2019)
Cui, Z., Wang, J., Bai, B., Guo, T., Feng, Y.: G-vae: a continuously variable rate deep image compression framework. arXiv preprint arXiv:2003.02012 (2020)
Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. ICLR (2020)
Duan, L.Y., et al.: Overview of the MPEG-CDVS standard. TIP 25(1), 179–194 (2015)
Duan, L.Y., et al.: Compact descriptors for video analysis: the emerging MPEG standard. IEEE Multimedia 26(2), 44–54 (2018)
Duan, L., Liu, J., Yang, W., Huang, T., Gao, W.: Video coding for machines: a paradigm of collaborative compression and intelligent analytics. TIP 29, 8680–8695 (2020)
Feng, R., et al.: Image coding for machines with omnipotent feature learning. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13697, pp. 510–528. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19836-6_29
Feng, R., Liu, J., Jin, X., Pan, X., Sun, H., Chen, Z.: Prompt-ICM: a unified framework towards image coding for machines with task-driven prompts. arXiv preprint arXiv:2305.02578 (2023)
Gao, W., et al.: Digital retina: a way to make the city brain more efficient by visual coding. IEEE Trans. Circ. Syst. Video Technol. 31(11), 4147–4161 (2021)
Han, K., Xiao, A., Wu, E., Guo, J., Xu, C., Wang, Y.: Transformer in transformer. NeurIPS 34, 15908–15919 (2021)
He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: CVPR, pp. 9729–9738 (2020)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)
He, T., Sun, S., Guo, Z., Chen, Z.: Beyond coding: detection-driven image compression with semantically structured bit-stream. In: 2019 Picture Coding Symposium (PCS), pp. 1–5. IEEE (2019)
Hu, Y., et al.: Planning-oriented autonomous driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 17853–17862 (2023)
Hu, Y., Yang, S., Yang, W., Duan, L.Y., Liu, J.: Towards coding for human and machine vision: a scalable image coding approach. In: 2020 IEEE International Conference on Multimedia and Expo (ICME), pp. 1–6. IEEE (2020)
Iwai, S., Miyazaki, T., Omachi, S.: Controlling rate, distortion, and realism: towards a single comprehensive neural image compression model. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 2900–2909 (2024)
Jia, M., et al.: Visual prompt tuning. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13693, pp. 709–727. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19827-4_41
Jin, X., Feng, R., Sun, S., Feng, R., He, T., Chen, Z.: Semantical video coding: instill static-dynamic clues into structured bitstream for AI tasks. J. Vis. Commun. Image Represent. 93, 103816 (2023)
Johnston, N., et al.: Improved lossy image compression with priming and spatially adaptive bit rates for recurrent networks. In: CVPR, pp. 4385–4393 (2018)
Körber, N., Kromer, E., Siebert, A., Hauke, S., Mueller-Gritschneder, D.: Egic: enhanced low-bit-rate generative image compression guided by semantic segmentation. arXiv preprint arXiv:2309.03244 (2023)
Le, N., Zhang, H., Cricri, F., Ghaznavi-Youvalari, R., Rahtu, E.: Image coding for machines: an end-to-end learned approach. In: ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1590–1594. IEEE (2021)
Li, H., Li, S., Dai, W., Li, C., Zou, J., Xiong, H.: Frequency-aware transformer for learned image compression. arXiv preprint arXiv:2310.16387 (2023)
Li, H., Li, S., Ding, S., Dai, W., Cao, M., Li, C., Zou, J., Xiong, H.: Image compression for machine and human vision with spatial-frequency adaptation. In: ECCV. Springer (2024)
Li, X., Shi, J., Chen, Z.: Task-driven semantic coding via reinforcement learning. TIP 30, 6307–6320 (2021)
Li, Y., Mao, H., Girshick, R., He, K.: Exploring plain vision transformer backbones for object detection. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13699, pp. 280–296. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20077-9_17
Liu, J., Sun, H., Katto, J.: Semantic segmentation in learned compressed domain. In: 2022 Picture Coding Symposium (PCS), pp. 181–185. IEEE (2022)
Liu, J., Sun, H., Katto, J.: Learned image compression with mixed transformer-CNN architectures. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14388–14397 (2023)
Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: CVPR, pp. 3431–3440 (2015)
Lu, G., Ge, X., Zhong, T., Geng, J., Hu, Q.: Preprocessing enhanced image compression for machine vision. arXiv preprint arXiv:2206.05650 (2022)
Lu, M., Guo, P., Shi, H., Cao, C., Ma, Z.: Transformer-based image compression. arXiv preprint arXiv:2111.06707 (2021)
Ma, H., Liu, D., Yan, N., Li, H., Wu, F.: End-to-end optimized versatile image compression with wavelet-like transform. IEEE Trans. Pattern Anal. Mach. Intell. 44(3), 1247–1263 (2020)
Ma, S., Zhang, X., Wang, S., Zhang, X., Jia, C., Wang, S.: Joint feature and texture coding: toward smart video representation via front-end intelligence. TCSVT 29(10), 3095–3105 (2018)
Mentzer, F., Agustsson, E., Tschannen, M., Timofte, R., Van Gool, L.: Conditional probability models for deep image compression. In: CVPR, pp. 4394–4402 (2018)
Mentzer, F., Toderici, G., Tschannen, M., Agustsson, E.: High-fidelity generative image compression. arXiv preprint arXiv:2006.09965 (2020)
Minnen, D., Ballé, J., Toderici, G.: Joint autoregressive and hierarchical priors for learned image compression. In: NeurIPS (2018)
Rabbani, M., Joshi, R.: An overview of the JPEG 2000 still image compression standard. Signal Process. Image Commun. 17(1), 3–48 (2002)
Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: Unified, real-time object detection. In: CVPR, pp. 779–788 (2016)
Redmon, J., Farhadi, A.: Yolo9000: better, faster, stronger. In: CVPR, pp. 7263–7271 (2017)
Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. NeurIPS 28, 91–99 (2015)
Singh, S., Abu-El-Haija, S., Johnston, N., Ballé, J., Shrivastava, A., Toderici, G.: End-to-end learning of compressible features. In: 2020 IEEE International Conference on Image Processing (ICIP), pp. 3349–3353. IEEE (2020)
Song, M., Choi, J., Han, B.: Variable-rate deep image compression through spatially-adaptive feature transform. In: ICCV, pp. 2380–2389 (2021)
Sullivan, G.J., Ohm, J.R., Han, W.J., Wiegand, T.: Overview of the high efficiency video coding (HEVC) standard. TCSVT 22(12), 1649–1668 (2012)
Sun, S., He, T., Chen, Z.: Semantic structured image coding framework for multiple intelligent applications. TCSVT 31, 3631–3642 (2020)
Terhörst, P., et al.: Qmagface: simple and accurate quality-aware face recognition. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 3484–3494 (2023)
Toderici, G., et al.: Full resolution image compression with recurrent neural networks. In: CVPR, pp. 5306–5314 (2017)
Wallace, G.K.: The JPEG still picture compression standard. IEEE Trans. Consum. Electron. 38(1), xviii–xxxiv (1992)
Wang, S., et al.: Towards analysis-friendly face representation with scalable feature and texture compression. TMM 24, 3169–3181 (2021)
Wiegand, T., Sullivan, G.J., Bjontegaard, G., Luthra, A.: Overview of the H. 264/AVC video coding standard. TCSVT 13(7), 560–576 (2003)
Wu, Y., Kirillov, A., Massa, F., Lo, W.Y., Girshick, R.: Detectron2 (2019). https://github.com/facebookresearch/detectron2
Xie, E., Wang, W., Yu, Z., Anandkumar, A., Alvarez, J.M., Luo, P.: SegFormer: simple and efficient design for semantic segmentation with transformers. NeurIPS 34, 12077–12090 (2021)
Yan, F.F., Hou, F., Lu, Z.L., Hu, X., Huang, C.B.: Efficient characterization and classification of contrast sensitivity functions in aging. Sci. Rep. 7(1), 5045 (2017)
Yang, F., Herranz, L., Van De Weijer, J., Guitián, J.A.I., López, A.M., Mozerov, M.G.: Variable rate deep image compression with modulated autoencoder. IEEE Signal Process. Lett. 27, 331–335 (2020)
Yang, R., Mandt, S.: Lossy image compression with conditional diffusion models. arXiv preprint arXiv:2209.06950 (2022)
Zheng, S., et al.: Rethinking semantic segmentation from a sequence-to-sequence perspective with transformers. In: CVPR, pp. 6881–6890 (2021)
Acknowledgments
This work was supported in part by NSFC 62302246 and ZJNSFC under Grant LQ23F010008, and supported by High Performance Computing Center at Eastern Institute of Technology, Ningbo, and Ningbo Institute of Digital Twin.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Liu, J. et al. (2025). Rate-Distortion-Cognition Controllable Versatile Neural Image Compression. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15114. Springer, Cham. https://doi.org/10.1007/978-3-031-72992-8_19
Download citation
DOI: https://doi.org/10.1007/978-3-031-72992-8_19
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-72991-1
Online ISBN: 978-3-031-72992-8
eBook Packages: Computer ScienceComputer Science (R0)