Abstract
LiDAR-based 3D object detection models show remarkable performance, however their effectiveness diminishes in adverse weather. On the other hand, 4D radar exhibits strengths in adverse weather but faces limitations in standalone use. While fusing LiDAR and 4D radar seems to be the most intuitive approach, this method comes with limitations, including increased computational load due to radar pre-processing, situational constraints when both domain information is present, and the potential loss of sensor advantages through joint optimization. In this paper, we propose a novel LiDAR-only-based 3D object detection framework that works robustly in all-weather (normal and adverse) conditions. Specifically, we first propose 4D radar-based 3D prompt learning to inject auxiliary radar information into a LiDAR-based pre-trained 3D detection model while preserving the precise geometry capabilities of LiDAR. Subsequently, using the preceding model as a teacher, we distill weather-insensitive features and responses into a LiDAR-only student model through our four levels of inter-/intra-modal knowledge distillation. Extensive experiments demonstrate that our prompt learning effectively integrates the strengths of LiDAR and 4D radar, and our LiDAR-only student model even surpasses the detection performance of teacher and state-of-the-art models under various weather conditions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Arnold, E., Al-Jarrah, O.Y., Dianati, M., Fallah, S., Oxtoby, D., Mouzakitis, A.: A survey on 3d object detection methods for autonomous driving applications. IEEE Trans. Intell. Transp. Syst. 20(10), 3782–3795 (2019). https://doi.org/10.1109/TITS.2019.2892405
Chen, Y., Liu, J., Zhang, X., Qi, X., Jia, J.: Voxelnext: fully sparse voxelnet for 3d object detection and tracking. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 21674–21683 (2023)
Cho, H., Choi, J., Baek, G., Hwang, W.: itkd: interchange transfer-based knowledge distillation for 3d object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 13540–13549 (2023)
Dong, B., Zhou, P., Yan, S., Zuo, W.: Lpt: long-tailed prompt tuning for image classification. arXiv preprint arXiv:2210.01033 (2022)
Gupta, H., Kotlyar, O., Andreasson, H., Lilienthal, A.J.: Robust object detection in challenging weather conditions. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), pp. 7523–7532 (2024)
Hahner, M., et al.: Lidar snowfall simulation for robust 3d object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 16364–16374 (2022)
Hegde, D., Kilic, V., Sindagi, V., Cooper, A.B., Foster, M., Patel, V.M.: Source-free unsupervised domain adaptation for 3d object detection in adverse weather. In: 2023 IEEE International Conference on Robotics and Automation (ICRA), pp. 6973–6980 (2023). https://doi.org/10.1109/ICRA48891.2023.10161341
Huang, K., Shi, B., Li, X., Li, X., Huang, S., Li, Y.: Multi-modal sensor fusion for auto driving perception: a survey. ArXiv arxiv:2202.02703 (2022). https://api.semanticscholar.org/CorpusID:246634264
Huang, K.C., Wu, T.H., Su, H.T., Hsu, W.H.: Monodtr: monocular 3d object detection with depth-aware transformer. In: CVPR (2022)
Jia, M., et al.: Visual prompt tuning. In: European Conference on Computer Vision, pp. 709–727. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-19827-4_41
Kim, Y., Shin, J., Kim, S., Lee, I.J., Choi, J.W., Kum, D.: Crn: camera radar net for accurate, robust, efficient 3d perception. In: 2023 IEEE/CVF International Conference on Computer Vision (ICCV) (2023)
Kong, L., et al.: Robo3d: towards robust and reliable 3d perception against corruptions. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 19994–20006 (2023)
Lang, A.H., Vora, S., Caesar, H., Zhou, L., Yang, J., Beijbom, O.: Pointpillars: fast encoders for object detection from point clouds. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 12689–12697 (2018). https://api.semanticscholar.org/CorpusID:55701967
Lester, B., Al-Rfou, R., Constant, N.: The power of scale for parameter-efficient prompt tuning. arXiv preprint arXiv:2104.08691 (2021)
Li, J., Luo, C., Yang, X.: Pillarnext: rethinking network designs for 3d object detection in lidar point clouds. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17567–17576 (2023)
Li, X.L., Liang, P.: Prefix-tuning: optimizing continuous prompts for generation. arXiv preprint arXiv:2101.00190 (2021)
Li, Y., Xu, S., Lin, M., Yin, J., Zhang, B., Cao, X.: Representation disparity-aware distillation for 3d object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6715–6724 (2023)
Li, Y.J., Park, J., O’Toole, M., Kitani, K.: Modality-agnostic learning for radar-lidar fusion in vehicle detection. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 908–917 (2022). https://doi.org/10.1109/CVPR52688.2022.00099
Lin, J., Yin, H., Yan, J., Ge, W., Zhang, H., Rigoll, G.: Improved 3d object detector under snowfall weather condition based on lidar point cloud. IEEE Sens. J. 22(16), 16276–16292 (2022). https://doi.org/10.1109/JSEN.2022.3188985
Lin, T.Y., Goyal, P., Girshick, R.B., He, K., Dollár, P.: Focal loss for dense object detection. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2999–3007 (2017). https://api.semanticscholar.org/CorpusID:47252984
Liu, Z., et al.: Bevfusion: multi-task multi-sensor fusion with unified bird’s-eye view representation. In: IEEE International Conference on Robotics and Automation (ICRA) (2023)
Meyer, M., Kuschk, G.: Automotive radar dataset for deep learning based 3d object detection. In: 2019 16th European Radar Conference (EuRAD), pp. 129–132 (2019)
Ngiam, J., et al.: Starnet: targeted computation for object detection in point clouds. CoRR arxiv:1908.11069 (2019). http://arxiv.org/abs/1908.11069
Nobis, F., Shafiei, E., Karle, P., Betz, J., Lienkamp, M.: Radar voxel fusion for 3d object detection. Appl. Sci. 11(12) (2021). https://www.mdpi.com/2076-3417/11/12/5598
Paek, D.H., Kong, S.H., Wijaya, K.T.: K-radar: 4d radar object detection for autonomous driving in various weather conditions. In: Thirty-sixth Conference on Neural Information Processing Systems Datasets and Benchmarks Track (2022). https://openreview.net/forum?id=W_bsDmzwaZ7
Palffy, A., Pool, E., Baratam, S., Kooij, J.F.P., Gavrila, D.M.: Multi-class road user detection with 3+1d radar in the view-of-delft dataset. IEEE Rob. Autom. Lett. 7(2), 4961–4968 (2022)
Piroli, A., Dallabetta, V., Kopp, J., Walessa, M., Meissner, D., Dietmayer, K.: Towards robust 3d object detection in rainy conditions (2023)
Qian, K., Zhu, S., Zhang, X., Li, L.E.: Robust multimodal vehicle detection in foggy weather using complementary lidar and radar signals. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 444–453 (2021)
Schick, T., Schütze, H.: Exploiting cloze questions for few shot text classification and natural language inference. arXiv preprint arXiv:2001.07676 (2020)
Shi, S., et al.: Pv-rcnn: point-voxel feature set abstraction for 3d object detection. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2020)
Shi, S., et al.: Pv-rcnn++: point-voxel feature set abstraction with local vector representation for 3d object detection. Int. J. Comput. Vision 131, 531–551 (2021). https://api.semanticscholar.org/CorpusID:231741181
Shi, S., Wang, X., Li, H.: Pointrcnn: 3d object proposal generation and detection from point cloud. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2019)
Shin, T., Razeghi, Y., Logan IV, R.L., Wallace, E., Singh, S.: Autoprompt: eliciting knowledge from language models with automatically generated prompts. arXiv preprint arXiv:2010.15980 (2020)
The Do, A., Yoo, M.: Lossdistillnet: 3d object detection in point cloud under harsh weather conditions. IEEE Access 10, 84882–84893 (2022). https://doi.org/10.1109/ACCESS.2022.3197765
Wang, C., Ma, C., Zhu, M., Yang, X.: Pointaugmenting: cross-modal augmentation for 3d object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11794–11803 (2021)
Wang, L., et al.: Multi-modal 3d object detection in autonomous driving: a survey and taxonomy. IEEE Trans. Intell. Veh. 8(7), 3781–3798 (2023). https://doi.org/10.1109/TIV.2023.3264658
Wang, L., et al.: Interfusion: interaction-based 4d radar and lidar fusion for 3d object detection. In: 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 12247–12253 (2022). https://doi.org/10.1109/IROS47612.2022.9982123
Wang, Y., Yin, J., Li, W., Frossard, P., Yang, R., Shen, J.: Ssda3d: semi-supervised domain adaptation for 3d object detection from point cloud. In: Proceedings of the AAAI Conference on Artificial Intelligence (2023)
Wang, Y., et al.: Club: cluster meets BEV for liDAR-based 3d object detection. In: Thirty-seventh Conference on Neural Information Processing Systems (2023)
Wang, Y., Solomon, J.M.: Object dgcnn: 3d object detection using dynamic graphs. Adv. Neural. Inf. Process. Syst. 34, 20745–20758 (2021)
Wu, H., Wen, C., Shi, S., Wang, C.: Virtual sparse convolution for multimodal 3d object detection. In: CVPR (2023)
Yan, Y., Mao, Y., Li, B.: Second: sparsely embedded convolutional detection. Sensors 18(10) (2018). https://www.mdpi.com/1424-8220/18/10/3337
Yang, B., Guo, R., Liang, M., Casas, S., Urtasun, R.: Radarnet: exploiting radar for robust perception of dynamic objects. In: European Conference on Computer Vision (2020). https://api.semanticscholar.org/CorpusID:220831382
Yang, B., Luo, W., Urtasun, R.: Pixor: real-time 3d object detection from point clouds. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)
Yang, J., Shi, S., Ding, R., Wang, Z., Qi, X.: Towards efficient 3d object detection with knowledge distillation. Adv. Neural. Inf. Process. Syst. 35, 21300–21313 (2022)
Yang, Z., Sun, Y., Liu, S., Jia, J.: 3dssd: point-based 3d single stage object detector. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2020)
Yin, T., Zhou, X., Krahenbuhl, P.: Center-based 3d object detection and tracking. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 11784–11793 (2021)
Zhang, L., Dong, R., Tai, H.S., Ma, K.: Pointdistiller: structured knowledge distillation towards efficient and compact 3d detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 21791–21801 (2023)
Zheng, W., Hong, M., Jiang, L., Fu, C.W.: Boosting 3d object detection by simulating multimodality on point clouds. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13638–13647 (2022)
Zheng, W., Tang, W., Jiang, L., Fu, C.W.: Se-ssd: self-ensembling single-stage object detector from point cloud. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14494–14503 (2021)
Zhou, K., Yang, J., Loy, C.C., Liu, Z.: Conditional prompt learning for vision-language models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16816–16825 (2022)
Zhou, K., Yang, J., Loy, C.C., Liu, Z.: Learning to prompt for vision-language models. Int. J. Comput. Vision 130(9), 2337–2348 (2022)
Zhou, S., Liu, W., Hu, C., Zhou, S., Ma, C.: Unidistill: a universal cross-modality knowledge distillation framework for 3d object detection in bird’s-eye view. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5116–5125 (2023)
Zhou, Y., Tuzel, O.: Voxelnet: end-to-end learning for point cloud based 3d object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)
Zhou, Z., Zhao, X., Wang, Y., Wang, P., Foroosh, H.: Centerformer: center-based transformer for 3d object detection. In: ECCV (2022)
Zhu, J., Lai, S., Chen, X., Wang, D., Lu, H.: Visual prompt multi-modal tracking. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9516–9526 (2023)
Acknowledgements
This work was supported by the Technology Innovation Program (1415187329, 20024355, Development of autonomous driving connectivity technology based on sensor-infrastructure cooperation) funded By the Ministry of Trade, Industry & Energy(MOTIE, Korea) and the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT) (NRF2022R1A2B5B03002636).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Chae, Y., Kim, H., Oh, C., Kim, M., Yoon, KJ. (2025). LiDAR-Based All-Weather 3D Object Detection via Prompting and Distilling 4D Radar. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15114. Springer, Cham. https://doi.org/10.1007/978-3-031-72992-8_21
Download citation
DOI: https://doi.org/10.1007/978-3-031-72992-8_21
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-72991-1
Online ISBN: 978-3-031-72992-8
eBook Packages: Computer ScienceComputer Science (R0)