Skip to main content

PanGu-Draw: Advancing Resource-Efficient Text-to-Image Synthesis with Time-Decoupled Training and Reusable Coop-Diffusion

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15103))

Included in the following conference series:

  • 341 Accesses

Abstract

Current large-scale diffusion models represent a giant leap forward in conditional image synthesis, capable of interpreting diverse cues like text, human poses, and edges. However, their reliance on substantial computational resources and extensive data collection remains a bottleneck. On the other hand, the integration of existing diffusion models, each specialized for different controls and operating in unique latent spaces, poses a challenge due to incompatible image resolutions and latent space embedding structures, hindering their joint use. Addressing these constraints, we present “PanGu-Draw”, a novel latent diffusion model designed for resource-efficient text-to-image synthesis that adeptly accommodates multiple control signals. We first propose a resource-efficient Time-Decoupling Training Strategy, which splits the monolithic text-to-image model into structure and texture generators. Each generator is trained using a regimen that maximizes data utilization and computational efficiency, cutting data preparation by 48% and reducing training resources by 51%. Secondly, we introduce “Coop-Diffusion”, an algorithm that enables the cooperative use of various pre-trained diffusion models with different latent spaces and predefined resolutions within a unified denoising process. This allows for multi-control image synthesis at arbitrary resolutions without the necessity for additional data or retraining. Empirical validations of Pangu-Draw show its exceptional prowess in text-to-image and multi-control image generation, suggesting a promising direction for future model training efficiencies and generation versatility. The largest 5B T2I PanGu-Draw model is released on the Ascend platform. Project page: https://pangu-draw.github.io

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/FlagOpen/FlagEval/tree/master/imageEval.

  2. 2.

    https://huggingface.co/lambdalabs/sd-image-variations-diffusers.

References

  1. Balaji, Y., et al.: EDIFFI: text-to-image diffusion models with an ensemble of expert denoisers. arXiv preprint arXiv:2211.01324 (2022)

  2. Betker, J., et al.: Improving image generation with better captions. Computer Science (2023). https://cdn.openai.com/papers/dall-e-3.pdf

  3. Chen, C., et al.: bert2BERT: towards reusable pretrained language models. arXiv preprint arXiv:2110.07143 (2021)

  4. Chen, J., et al.: Pixart-\(\alpha \): fast training of diffusion transformer for photorealistic text-to-image synthesis (2023)

    Google Scholar 

  5. Dhariwal, P., Nichol, A.: Diffusion models beat GANs on image synthesis. Adv. Neural. Inf. Process. Syst. 34, 8780–8794 (2021)

    Google Scholar 

  6. Ding, N., Tang, Y., Han, K., Xu, C., Wang, Y.: Network expansion for practical training acceleration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 20269–20279 (2023)

    Google Scholar 

  7. Feng, Z., et al.: ERNIE-ViLG 2.0: improving text-to-image diffusion model with knowledge-enhanced mixture-of-denoising-experts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10135–10145 (2023)

    Google Scholar 

  8. Fu, C., et al.: TripLe: revisiting pretrained model reuse and progressive learning for efficient vision transformer scaling and searching. In: ICCV (2023)

    Google Scholar 

  9. Gu, J., et al.: Wukong: a 100 million large-scale Chinese cross-modal pre-training benchmark. Adv. Neural. Inf. Process. Syst. 35, 26418–26431 (2022)

    Google Scholar 

  10. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs trained by a two time-scale update rule converge to a local Nash equilibrium. Adv. Neural Info. Process. Syst. 30 (2017)

    Google Scholar 

  11. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. Adv. Neural. Inf. Process. Syst. 33, 6840–6851 (2020)

    Google Scholar 

  12. Ho, J., Saharia, C., Chan, W., Fleet, D.J., Norouzi, M., Salimans, T.: Cascaded diffusion models for high fidelity image generation. J. Mach. Learn. Res. 23, 47–1 (2022)

    MathSciNet  Google Scholar 

  13. Ho, J., Salimans, T.: Classifier-free diffusion guidance. arXiv preprint arXiv:2207.12598 (2022)

  14. Jin, Z., Shen, X., Li, B., Xue, X.: Training-free diffusion model adaptation for variable-sized text-to-image synthesis. arXiv preprint arXiv:2306.08645 (2023)

  15. Li, X., et al.: COCO-CN for cross-lingual image tagging, captioning, and retrieval. IEEE Trans. Multimedia 21(9), 2347–2360 (2019)

    Article  Google Scholar 

  16. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, Part V 13. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  17. Liu, H., Li, C., Wu, Q., Lee, Y.J.: Visual instruction tuning. arXiv preprint arXiv:2304.08485 (2023)

  18. Liu, N., Li, S., Du, Y., Torralba, A., Tenenbaum, J.B.: Compositional visual generation with composable diffusion models. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision, ECCV 2022. LNCS, vol. 13677, pp. 423–439. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19790-1_26

  19. Nichol, A, et al.: GLIDE: towards photorealistic image generation and editing with text-guided diffusion models. arXiv preprint arXiv:2112.10741 (2021)

  20. Nichol, A.Q., Dhariwal, P.: Improved denoising diffusion probabilistic models. In: ICML, pp. 8162–8171. PMLR (2021)

    Google Scholar 

  21. Podell, D., et al.: SDXL: improving latent diffusion models for high-resolution image synthesis. arXiv preprint arXiv:2307.01952 (2023)

  22. Qin, Y., et al.: ELLE: efficient lifelong pre-training for emerging data. arXiv preprint arXiv:2203.06311 (2022)

  23. Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., Chen, M.: Hierarchical text-conditional image generation with CLIP latents. arXiv preprint arXiv:2204.06125 (2022)

  24. Ramesh, A., et al.: Zero-shot text-to-image generation. In: International Conference on Machine Learning, pp. 8821–8831. PMLR (2021)

    Google Scholar 

  25. Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution image synthesis with latent diffusion models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2022, pp. 10684–10695 (2022)

    Google Scholar 

  26. Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution image synthesis with latent diffusion models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10684–10695 (2022)

    Google Scholar 

  27. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional Networks for Biomedical Image Segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015, Part III 18. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  28. Saharia, C., et al.: Photorealistic text-to-image diffusion models with deep language understanding. Adv. Neural. Inf. Process. Syst. 35, 36479–36494 (2022)

    Google Scholar 

  29. Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X.: Improved techniques for training GANs. Adv. Neural. Inf. Process. Syst. 29, 2234–2242 (2016)

    Google Scholar 

  30. Shonenkov, A., Konstantinov, M., Bakshandaeva, D., Schuhmann, C., Ivanova, K., Klokova, N.: DeepFloyd IF: a powerful text-to-image model that can smartly integrate text into images (2023). https://www.deepfloyd.ai/deepfloyd-if. Accessed 16 Nov 2023

  31. Xu, X., Wang, Z., Zhang, E., Wang, K., Shi, H.: Versatile diffusion: text, images and variations all in one diffusion model. arXiv preprint arXiv:2211.08332 (2022)

  32. Xue, Z., et al.: RAPHAEL: text-to-image generation via large mixture of diffusion paths. arXiv preprint arXiv:2305.18295 (2023)

  33. Yang, A., et al.: Chinese CLIP: contrastive vision-language pretraining in Chinese. arXiv preprint arXiv:2211.01335 (2022)

  34. Yao, L., et al.: DetCLIPv2: scalable open-vocabulary object detection pre-training via word-region alignment. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23497–23506 (2023)

    Google Scholar 

  35. Yao, L., et al.: FILIP: fine-grained interactive language-image pre-training. arXiv preprint arXiv:2111.07783 (2021)

  36. Ye, F., Liu, G., Wu, X., Wu, L.: AltDiffusion: a multilingual text-to-image diffusion model (2023)

    Google Scholar 

  37. Zhang, J., et al.: Fengshenbang 1.0: being the foundation of Chinese cognitive intelligence. CoRR abs/2209.02970 (2022)

    Google Scholar 

  38. Zhang, L., Rao, A., Agrawala, M.: Adding conditional control to text-to-image diffusion models. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3836–3847 (2023)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hang Xu .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 27954 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lu, G. et al. (2025). PanGu-Draw: Advancing Resource-Efficient Text-to-Image Synthesis with Time-Decoupled Training and Reusable Coop-Diffusion. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15103. Springer, Cham. https://doi.org/10.1007/978-3-031-72995-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72995-9_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72994-2

  • Online ISBN: 978-3-031-72995-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics