Skip to main content

Dolphins: Multimodal Language Model for Driving

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15103))

Included in the following conference series:

  • 354 Accesses

Abstract

The quest for fully autonomous vehicles (AVs) capable of navigating complex real-world scenarios with human-like understanding and responsiveness. In this paper, we introduce Dolphins, a novel vision-language model architected to imbibe human-like abilities as a conversational driving assistant. Dolphins is adept at processing multimodal inputs comprising video (or image) data, text instructions, and historical control signals to generate informed outputs corresponding to the provided instructions. Building upon the open-sourced pretrained Vision-Language Model, OpenFlamingo, we first enhance Dolphins’s reasoning capabilities through an innovative Grounded Chain of Thought (GCoT) process in the general domain. Then we tailored Dolphins to the driving domain by constructing driving-specific instruction data and conducting instruction tuning. Through the utilization of the BDD-X dataset, we designed and consolidated four distinct AV tasks into Dolphins to foster a holistic understanding of intricate driving scenarios. As a result, the distinctive features of Dolphins are characterised into two dimensions: (1) the ability to provide a comprehensive understanding of complex and long-tailed open-world driving scenarios and solve a spectrum of AV tasks, and (2) the emergence of human-like capabilities including gradient-free instant adaptation via in-context learning and error recovery via reflection. The anonymous demo is available at https://vlm-driver.github.io/.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/OpenDriveLab/DriveLM/tree/main/challenge.

References

  1. Openai chat. https://chat.openai.com. Accessed 20 Oct 2023

  2. Openai chat. https://openai.com/research/gpt-4v-system-card. Accessed 20 Oct 2023

  3. TinyChat: large language model on the edge. https://hanlab.mit.edu/blog/tinychat. Accessed 20 Oct 2023

  4. What are embeddings? https://platform.openai.com/docs/guides/embeddings/what-are-embeddings. Accessed 20 Oct 2023

  5. Alayrac, J.B., et al.: Flamingo: a visual language model for few-shot learning. ArXiv preprint arxiv: abs/2204.14198 (2022), https://api.semanticscholar.org/CorpusID:248476411

  6. Awadalla, A., et al.: OpenFlamingo: an open-source framework for training large autoregressive vision-language models. ArXiv abs/2308.01390 (2023), https://api.semanticscholar.org/CorpusID:261043320

  7. Banerjee, S., Lavie, A.: METEOR: an automatic metric for MT evaluation with improved correlation with human judgments. In: Proceedings of the ACL Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization, pp. 65–72 (2005)

    Google Scholar 

  8. Caesar, H., et al.: nuScenes: a multimodal dataset for autonomous driving. arXiv preprint arXiv:1903.11027 (2019)

  9. Chen, K., Zhang, Z., Zeng, W., Zhang, R., Zhu, F., Zhao, R.: Shikra: unleashing multimodal LLM’s referential dialogue magic. arXiv preprint arXiv:2306.15195 (2023)

  10. Chen, L., Wu, P., Chitta, K., Jaeger, B., Geiger, A., Li, H.: End-to-end autonomous driving: challenges and frontiers. arXiv preprint arXiv:2306.16927 (2023)

  11. Chiang, W.L., et al.: Vicuna: an open-source chatbot impressing GPT-4 with 90%* chatGPT quality (March 2023). https://lmsys.org/blog/2023-03-30-vicuna/

  12. Coelho, D., Oliveira, M.: A review of end-to-end autonomous driving in urban environments. IEEE Access 10, 75296–75311 (2022)

    Article  Google Scholar 

  13. Contributors, D.: DriveLM: drive on language. https://github.com/OpenDriveLab/DriveLM (2023)

  14. Cui, C., et al.: A survey on multimodal large language models for autonomous driving. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 958–979 (2024)

    Google Scholar 

  15. Dai, W., et al.: InstructBLIP: towards general-purpose vision-language models with instruction tuning. ArXiv preprint arxiv: abs/2305.06500 (2023). https://api.semanticscholar.org/CorpusID:258615266

  16. Ding, X., Han, J., Xu, H., Zhang, W., Li, X.: HiLM-D: towards high-resolution understanding in multimodal large language models for autonomous driving. arXiv preprint arXiv:2309.05186 (2023)

  17. Ding, X., Han, J., Xu, H., Liang, X., Zhang, W., Li, X.: Holistic autonomous driving understanding by bird’s-eye-view injected multi-modal large models. arXiv preprint arXiv:2401.00988 (2024)

  18. Fu, D., et al.: Drive like a human: rethinking autonomous driving with large language models. arXiv preprint arXiv:2307.07162 (2023)

  19. Goyal, Y., Khot, T., Summers-Stay, D., Batra, D., Parikh, D.: Making the V in VQA matter: elevating the role of image understanding in visual question answering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6904–6913 (2017)

    Google Scholar 

  20. Han, W., Guo, D., Xu, C.Z., Shen, J.: DME-driver: integrating human decision logic and 3D scene perception in autonomous driving. arXiv preprint arXiv:2401.03641 (2024)

  21. Hudson, D.A., Manning, C.D.: GQA: a new dataset for real-world visual reasoning and compositional question answering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6700–6709 (2019)

    Google Scholar 

  22. Jain, A., Del Pero, L., Grimmett, H., Ondruska, P.: Autonomy 2.0: why is self-driving always 5 years away? arXiv preprint arXiv:2107.08142 (2021)

  23. Jin, B., et al.: Adapt: action-aware driving caption transformer. In: 2023 IEEE International Conference on Robotics and Automation (ICRA), pp. 7554–7561 (2023). https://api.semanticscholar.org/CorpusID:256459842

  24. Jin, Y., et al.: SurrealDriver: designing generative driver agent simulation framework in urban contexts based on large language model. arXiv preprint arXiv:2309.13193 (2023)

  25. Jordan, M.I., Mitchell, T.M.: Machine learning: trends, perspectives, and prospects. Science 349(6245), 255–260 (2015)

    Article  MathSciNet  Google Scholar 

  26. Kafle, K., Kanan, C.: An analysis of visual question answering algorithms. In: Proceedings of the IEEE international conference on computer vision. pp. 1965–1973 (2017)

    Google Scholar 

  27. Kim, J., Rohrbach, A., Darrell, T., Canny, J., Akata, Z.: Textual explanations for self-driving vehicles. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 563–578 (2018)

    Google Scholar 

  28. Kim, J., Rohrbach, A., Darrell, T., Canny, J.F., Akata, Z.: Textual explanations for self-driving vehicles. In: European Conference on Computer Vision (2018). https://api.semanticscholar.org/CorpusID:51887402

  29. Li, B., et al.: Mimic-it: multi-modal in-context instruction tuning. arXiv preprint arxiv: abs/2306.05425 (2023). https://api.semanticscholar.org/CorpusID:259108295

  30. Li, B., Zhang, Y., Chen, L., Wang, J., Yang, J., Liu, Z.: Otter: a multi-modal model with in-context instruction tuning. arXiv preprint arxiv: abs/2305.03726 (2023). https://api.semanticscholar.org/CorpusID:258547300

  31. Li, C., et al.: LLaVA-med: training a large language-and-vision assistant for biomedicine in one day. arXiv preprint arXiv:2306.00890 (2023)

  32. Li, J., Li, D., Savarese, S., Hoi, S.C.H.: BLIP-2: bootstrapping language-image pre-training with frozen image encoders and large language models. arXiv preprint arxiv: abs/2301.12597 (2023). https://api.semanticscholar.org/CorpusID:256390509

  33. Li, W., et al.: AADS: augmented autonomous driving simulation using data-driven algorithms. Sci. robot. 4(28), eaaw0863 (2019)

    Google Scholar 

  34. Liu, H., Li, C., Wu, Q., Lee, Y.J.: Visual instruction tuning. arXiv preprint arxiv:abs/2304.08485 (2023). https://api.semanticscholar.org/CorpusID:258179774

  35. Liu, H., Li, C., Wu, Q., Lee, Y.J.: Visual instruction tuning. arXiv preprint arXiv:2304.08485 (2023)

  36. Liu, L., et al.: Computing systems for autonomous driving: state of the art and challenges. IEEE Internet Things J. 8(8), 6469–6486 (2020)

    Article  Google Scholar 

  37. Liu, Z., et al.: Video swin transformer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3202–3211 (2022)

    Google Scholar 

  38. Luo, R., et al.: Valley: video assistant with large language model enhanced ability. arXiv preprint arxiv: abs/2306.07207 (2023). https://api.semanticscholar.org/CorpusID:259138706

  39. Maaz, M., Rasheed, H., Khan, S., Khan, F.S.: Video-chatGPT: towards detailed video understanding via large vision and language models. arXiv preprint arXiv:2306.05424 (2023)

  40. Mao, J., Qian, Y., Zhao, H., Wang, Y.: GPT-driver: learning to drive with GPT. arXiv preprint arxiv: abs/2310.01415 (2023). https://api.semanticscholar.org/CorpusID:263605637

  41. Mao, J., Ye, J., Qian, Y., Pavone, M., Wang, Y.: A language agent for autonomous driving. arXiv preprint arXiv:2311.10813 (2023)

  42. Marcu, A.M., et al.: LingoQA: video question answering for autonomous driving. arXiv preprint arXiv:2312.14115 (2023)

  43. Marino, K., Rastegari, M., Farhadi, A., Mottaghi, R.: Ok-VQA: a visual question answering benchmark requiring external knowledge. In: Proceedings of the IEEE/cvf Conference on Computer Vision and Pattern Recognition, pp. 3195–3204 (2019)

    Google Scholar 

  44. Mom, G.: The Evolution of Automotive Technology: A Handbook. SAE International (2023)

    Google Scholar 

  45. Mu, Y., et al.: EmbodiedGPT: vision-language pre-training via embodied chain of thought. arXiv preprint arXiv:2305.15021 (2023)

  46. Papineni, K., Roukos, S., Ward, T., Zhu, W.J.: BLEU: a method for automatic evaluation of machine translation. In: Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics, pp. 311–318 (2002)

    Google Scholar 

  47. Rubin, O., Herzig, J., Berant, J.: Learning to retrieve prompts for in-context learning. arXiv preprint arXiv:2112.08633 (2021)

  48. Schuhmann, C., et al.: LAION-5B: an open large-scale dataset for training next generation image-text models. arXiv preprint arxiv: abs/2210.08402 (2022). https://api.semanticscholar.org/CorpusID:252917726

  49. Shao, H., Hu, Y., Wang, L., Waslander, S.L., Liu, Y., Li, H.: LMDrive: closed-loop end-to-end driving with large language models. arXiv preprint arXiv:2312.07488 (2023)

  50. Soori, M., Arezoo, B., Dastres, R.: Artificial intelligence, machine learning and deep learning in advanced robotics, a review. Cognitive Robot. 3, 54–70 (2023)

    Google Scholar 

  51. Tampuu, A., Matiisen, T., Semikin, M., Fishman, D., Muhammad, N.: A survey of end-to-end driving: architectures and training methods. IEEE Trans. Neural Netw. Learn. Syst. 33(4), 1364–1384 (2020)

    Article  Google Scholar 

  52. Team, M.N.: Introducing MPT-7B: a new standard for open-source, commercially usable LLMs (2023). www.mosaicml.com/blog/mpt-7b. Accessed 05 May 2023

  53. Tian, X., et al.: DriveVLM: the convergence of autonomous driving and large vision-language models. arXiv preprint arXiv:2402.12289 (2024)

  54. Touvron, H., et al.: LLaMA: open and efficient foundation language models. arXiv preprint arxiv: abs/2302.13971 (2023). https://api.semanticscholar.org/CorpusID:257219404

  55. Touvron, H., et al.: LLaMA: open and efficient foundation language models. arXiv preprint arXiv:2302.13971 (2023)

  56. Touvron, H., et al.: LLaMA 2: open foundation and fine-tuned chat models. ArXiv abs/2307.09288 (2023). https://api.semanticscholar.org/CorpusID:259950998

  57. Vedantam, R., Lawrence Zitnick, C., Parikh, D.: Cider: consensus-based image description evaluation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4566–4575 (2015)

    Google Scholar 

  58. Venugopalan, S., Rohrbach, M., Donahue, J., Mooney, R., Darrell, T., Saenko, K.: Sequence to sequence-video to text. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4534–4542 (2015)

    Google Scholar 

  59. Wang, W., et al.: DriveMLM: aligning multi-modal large language models with behavioral planning states for autonomous driving. arXiv preprint arXiv:2312.09245 (2023)

  60. Wong, K., Gu, Y., Kamijo, S.: Mapping for autonomous driving: opportunities and challenges. IEEE Intell. Transp. Syst. Mag. 13(1), 91–106 (2020)

    Article  Google Scholar 

  61. Wu, D., Han, W., Wang, T., Liu, Y.H., Zhang, X., Shen, J.: Language prompt for autonomous driving. arXiv preprint arxiv: abs/2309.04379 (2023). https://api.semanticscholar.org/CorpusID:261660217

  62. Xu, Z., et al.: DriveGPT4: interpretable end-to-end autonomous driving via large language model. arXiv preprint arxiv: abs/2310.01412 (2023). https://api.semanticscholar.org/CorpusID:263605524

  63. Yang, S., et al.: LiDAR-LLM: exploring the potential of large language models for 3D lidar understanding. arXiv preprint arXiv:2312.14074 (2023)

  64. Yu, F., et al.: BDD100K: a diverse driving dataset for heterogeneous multitask learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2636–2645 (2020)

    Google Scholar 

  65. Yuan, J., Sun, S., Omeiza, D., Zhao, B., Newman, P., Kunze, L., Gadd, M.: RAG-driver: generalisable driving explanations with retrieval-augmented in-context learning in multi-modal large language model. arXiv preprint arXiv:2402.10828 (2024)

  66. Yuan, W., Pang, R.Y., Cho, K., Sukhbaatar, S., Xu, J., Weston, J.: Self-rewarding language models. arXiv preprint arXiv:2401.10020 (2024)

  67. Zhang, H., Li, X., Bing, L.: Video-LLaMA: an instruction-tuned audio-visual language model for video understanding. arXiv preprint arxiv: abs/2306.02858 (2023). https://api.semanticscholar.org/CorpusID:259075356

  68. Zhang, S., et al.: GPT4RoI: instruction tuning large language model on region-of-interest. arXiv preprint arXiv:2307.03601 (2023)

  69. Zhao, B., Wu, B., Huang, T.: SVIT: scaling up visual instruction tuning. arXiv preprint arXiv:2307.04087 (2023)

  70. Zhao, H., et al.: MMICL: empowering vision-language model with multi-modal in-context learning. arXiv preprint arXiv:2309.07915 (2023)

  71. Zhu, D., Chen, J., Shen, X., Li, X., Elhoseiny, M.: MiniGPT-4: enhancing vision-language understanding with advanced large language models. arXiv preprint arxiv: abs/2304.10592 (2023). https://api.semanticscholar.org/CorpusID:258291930

  72. Zhu, W., et al.: Multimodal c4: An open, billion-scale corpus of images interleaved with text. arXiv preprint arxiv: abs/2304.06939 (2023). https://api.semanticscholar.org/CorpusID:258170467

Download references

Acknowledgements

We sincerely appreciate the reviewers’ insightful comments and valuable feedback, which have greatly enhanced the quality of our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingzi Ma .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 22738 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ma, Y., Cao, Y., Sun, J., Pavone, M., Xiao, C. (2025). Dolphins: Multimodal Language Model for Driving. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15103. Springer, Cham. https://doi.org/10.1007/978-3-031-72995-9_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72995-9_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72994-2

  • Online ISBN: 978-3-031-72995-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics