Abstract
Facial Expression Analysis remains a challenging task due to unexpected task-irrelevant noise, such as identity, head pose, and background. To address this issue, this paper proposes a novel framework, called Norface, that is unified for both Action Unit (AU) analysis and Facial Emotion Recognition (FER) tasks. Norface consists of a normalization network and a classification network. First, the carefully designed normalization network struggles to directly remove the above task-irrelevant noise, by maintaining facial expression consistency but normalizing all original images to a common identity with consistent pose, and background. Then, these additional normalized images are fed into the classification network. Due to consistent identity and other factors (e.g. head pose, background, etc.), the normalized images enable the classification network to extract useful expression information more effectively. Additionally, the classification network incorporates a Mixture of Experts to refine the latent representation, including handling the input of facial representations and the output of multiple (AU or emotion) labels. Extensive experiments validate the carefully designed framework with the insight of identity normalization. The proposed method outperforms existing SOTA methods in multiple facial expression analysis tasks, including AU detection, AU intensity estimation, and FER tasks, as well as their cross-dataset tasks. For the normalized datasets and code please visit project page.
H. Liu and R. An—Equal contribution.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ali, K., Hughes, C.E.: Facial expression recognition by using a disentangled identity-invariant expression representation. In: 2020 25th International Conference on Pattern Recognition (ICPR), pp. 9460–9467. IEEE (2021)
An, R., et al.: Learning facial expression-aware global-to-local representation for robust action unit detection. Appl. Intell. 1–21 (2024)
Bai, Y., et al.: Masked autoencoders enable efficient knowledge distillers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 24256–24265 (2023)
Cai, J., et al.: Identity-free facial expression recognition using conditional generative adversarial network. In: 2021 IEEE International Conference on Image Processing (ICIP), pp. 1344–1348. IEEE (2021)
Cao, Q., Shen, L., Xie, W., Parkhi, O.M., Zisserman, A.: Vggface2: a dataset for recognising faces across pose and age. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 67–74. IEEE (2018)
Chang, Y., Wang, S.: Knowledge-driven self-supervised representation learning for facial action unit recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 20417–20426 (2022)
Chen, K., Yang, X., Fan, C., Zhang, W., Ding, Y.: Semantic-rich facial emotional expression recognition. IEEE Trans. Affect. Comput. 13(4), 1906–1916 (2022)
Chen, S., Wang, J., Chen, Y., Shi, Z., Geng, X., Rui, Y.: Label distribution learning on auxiliary label space graphs for facial expression recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13984–13993 (2020)
Chen, Y., Chen, D., Wang, Y., Wang, T., Liang, Y.: CaFGraph: context-aware facial multi-graph representation for facial action unit recognition. In: Proceedings of the 29th ACM International Conference on Multimedia, pp. 1029–1037 (2021)
Chen, Y., Joo, J.: Understanding and mitigating annotation bias in facial expression recognition. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 14980–14991 (2021)
Chen, Z.M., Wei, X.S., Wang, P., Guo, Y.: Multi-label image recognition with graph convolutional networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5177–5186 (2019)
Cui, Z., Song, T., Wang, Y., Ji, Q.: Knowledge augmented deep neural networks for joint facial expression and action unit recognition. In: Advance in Neural Information Processing System, vol. 33, pp. 14338–14349 (2020)
Deng, J., Guo, J., Xue, N., Zafeiriou, S.: ArcFace: Additive angular margin loss for deep face recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4690–4699 (2019)
DeVries, T., Taylor, G.W.: Improved regularization of convolutional neural networks with cutout. arXiv preprint arXiv:1708.04552 (2017)
Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)
Fan, Y., Lam, J., Li, V.: Facial action unit intensity estimation via semantic correspondence learning with dynamic graph convolution. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 12701–12708 (2020)
Ge, X., et al.: Local global relational network for facial action units recognition. In: 2021 16th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2021), pp. 01–08. IEEE (2021)
He, J., Qiu, J., Zeng, A., Yang, Z., Zhai, J., Tang, J.: FastMoE: a fast mixture-of-expert training system. arXiv preprint arXiv:2103.13262 (2021)
He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.: Masked autoencoders are scalable vision learners. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16000–16009 (2022)
Hong, F.T., Zhang, L., Shen, L., Xu, D.: Depth-aware generative adversarial network for talking head video generation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3397–3406 (2022)
Huang, P.J., Xie, H., Huang, H.C., Shuai, H.H., Cheng, W.H.: CA-FER: mitigating spurious correlation with counterfactual attention in facial expression recognition. IEEE Trans. Affect. Comput. (2023)
Huang, W., Zhang, S., Zhang, P., Zha, Y., Fang, Y., Zhang, Y.: Identity-aware facial expression recognition via deep metric learning based on synthesized images. IEEE Trans. Multimedia 24, 3327–3339 (2021)
Jacob, G.M., Stenger, B.: Facial action unit detection with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7680–7689 (2021)
Ji, Y., Hu, Y., Yang, Y., Shen, H.T.: Region attention enhanced unsupervised cross-domain facial emotion recognition. IEEE Trans. Knowl. Data Eng. (2021)
Jiang, J., Deng, W.: Disentangling identity and pose for facial expression recognition. IEEE Trans. Affect. Comput. 13(4), 1868–1878 (2022)
Kim, D., Song, B.C.: Contrastive adversarial learning for person independent facial emotion recognition. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 5948–5956 (2021)
Kim, D., Song, B.C.: Optimal transport-based identity matching for identity-invariant facial expression recognition. In: Advance in Neural Information Processing System, vol. 35, pp. 18749–18762 (2022)
Kingma, D.P., Ba, J.: ADAM: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
Kollias, D., Zafeiriou, S.: Affect analysis in-the-wild: Valence-arousal, expressions, action units and a unified framework. arXiv preprint arXiv:2103.15792 (2021)
Lee, I., Lee, E., Yoo, S.B.: Latent-OFER: detect, mask, and reconstruct with latent vectors for occluded facial expression recognition. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1536–1546 (2023)
Li, G., Zhu, X., Zeng, Y., Wang, Q., Lin, L.: Semantic relationships guided representation learning for facial action unit recognition. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 8594–8601 (2019)
Li, S., Deng, W.: Deep facial expression recognition: a survey. IEEE Trans. Affect. Comput. 13(3), 1195–1215 (2020)
Li, S., Deng, W.: A deeper look at facial expression dataset bias. IEEE Trans. Affect. Comput. 13(2), 881–893 (2020)
Li, S., Deng, W., Du, J.: Reliable crowdsourcing and deep locality-preserving learning for expression recognition in the wild. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2852–2861 (2017)
Li, W., Abtahi, F., Zhu, Z., Yin, L.: EAC-Net: deep nets with enhancing and cropping for facial action unit detection. IEEE Trans. Pattern Anal. Mach. Intell. 40(11), 2583–2596 (2018)
Lim, J.H., Ye, J.C.: Geometric GAN. arXiv preprint arXiv:1705.02894 (2017)
Liu, H., Cai, H., Lin, Q., Zhang, X., Li, X., Xiao, H.: FEDA: fine-grained emotion difference analysis for facial expression recognition. Biomed. Signal Process. Control 79, 104209 (2023)
Liu, H., Cai, H., Lin, Q., Li, X., Xiao, H.: Adaptive multilayer perceptual attention network for facial expression recognition. IEEE Trans. Circ. Syst. Video Technol. 32(9), 6253–6266 (2022)
Liu, H., Cai, H., Lin, Q., Li, X., Xiao, H.: Learning from more: Combating uncertainty cross-multidomain for facial expression recognition. In: Proceedings of the 31st ACM International Conference on Multimedia, pp. 5889–5898 (2023)
Liu, R., et al.: Towards a simultaneous and granular identity-expression control in personalized face generation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2114–2123 (2024)
Liu, Z., Luo, P., Wang, X., Tang, X.: Deep learning face attributes in the wild. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3730–3738 (2015)
Luo, H., et al.: Normalized avatar synthesis using StyleGAN and perceptual refinement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11662–11672 (2021)
Ma, J., Zhao, Z., Yi, X., Chen, J., Hong, L., Chi, E.H.: Modeling task relationships in multi-task learning with multi-gate mixture-of-experts. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 1930–1939 (2018)
Ma, T., Li, B., He, Q., Dong, J., Tan, T.: GaFET: learning geometry-aware facial expression translation from in-the-wild images. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 7115–7125 (2023)
Mallya, A., Wang, T.C., Liu, M.Y.: Implicit warping for animation with image sets. In: Advance in Neural Information Processing System, vol. 35, pp. 22438–22450 (2022)
Martinez, B., Valstar, M.F., Jiang, B., Pantic, M.: Automatic analysis of facial actions: a survey. IEEE Trans. Affect. Comput. 10(3), 325–347 (2017)
Mavadati, S.M., Mahoor, M.H., Bartlett, K., Trinh, P., Cohn, J.F.: DISFA: a spontaneous facial action intensity database. IEEE Trans. Affect. Comput. 4(2), 151–160 (2013)
Mollahosseini, A., Hasani, B., Mahoor, M.H.: AffectNet: a database for facial expression, valence, and arousal computing in the wild. IEEE Trans. Affect. Comput. 10(1), 18–31 (2017)
Mustafa, B., Riquelme, C., Puigcerver, J., Jenatton, R., Houlsby, N.: Multimodal contrastive learning with LIMoE: the language-image mixture of experts. In: Advance in Neural Information Processing System, vol. 35, pp. 9564–9576 (2022)
Nicolle, J., Bailly, K., Chetouani, M.: Facial action unit intensity prediction via hard multi-task metric learning for kernel regression. In: 2015 11th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG), vol. 6, pp. 1–6. IEEE (2015)
Niu, X., Han, H., Yang, S., Huang, Y., Shan, S.: Local relationship learning with person-specific shape regularization for facial action unit detection. In: Proceedings of the IEEE/CVF Conference on computer vision and pattern recognition, pp. 11917–11926 (2019)
Ntinou, I., Sanchez, E., Bulat, A., Valstar, M., Tzimiropoulos, G.: A transfer learning approach to heatmap regression for action unit intensity estimation. IEEE Trans. Affect. Comput. 14(1), 436–450 (2021)
Reed, C.J., et al.: Scale-MAE: a scale-aware masked autoencoder for multiscale geospatial representation learning. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4088–4099 (2023)
Ren, Y., Li, G., Chen, Y., Li, T.H., Liu, S.: PIRenderer: controllable portrait image generation via semantic neural rendering. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 13759–13768 (2021)
Ruan, D., Yan, Y., Lai, S., Chai, Z., Shen, C., Wang, H.: Feature decomposition and reconstruction learning for effective facial expression recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7660–7669 (2021)
Sanchez, E., Tellamekala, M.K., Valstar, M., Tzimiropoulos, G.: Affective processes: stochastic modelling of temporal context for emotion and facial expression recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9074–9084 (2021)
Shao, Z., Liu, Z., Cai, J., Ma, L.: JAA-Net: joint facial action unit detection and face alignment via adaptive attention. Int. J. Comput. Vision 129, 321–340 (2021)
Shazeer, N., et al.: Outrageously large neural networks: the sparsely-gated mixture-of-experts layer. arXiv preprint arXiv:1701.06538 (2017)
She, J., Hu, Y., Shi, H., Wang, J., Shen, Q., Mei, T.: Dive into ambiguity: latent distribution mining and pairwise uncertainty estimation for facial expression recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6248–6257 (2021)
Shrout, P.E., Fleiss, J.L.: Intraclass correlations: uses in assessing rater reliability. Psychol. Bull. 86(2), 420 (1979)
Siarohin, A., Lathuilière, S., Tulyakov, S., Ricci, E., Sebe, N.: First order motion model for image animation. In: Advances in Neural Information Processing Systems, vol. 32 (2019)
Song, T., Cui, Z., Zheng, W., Ji, Q.: Hybrid message passing with performance-driven structures for facial action unit detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6267–6276 (2021)
Sun, K., et al.: High-resolution representations for labeling pixels and regions. arXiv preprint arXiv:1904.04514 (2019)
Sun, X., Zeng, J., Shan, S.: Emotion-aware contrastive learning for facial action unit detection. In: 2021 16th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2021), pp. 01–08. IEEE (2021)
Tu, C.H., Yang, C.Y., Hsu, J.Y.J.: IdenNet: identity-aware facial action unit detection. In: 2019 14th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2019), pp. 1–8. IEEE (2019)
Vandenhende, S., Georgoulis, S., Van Gansbeke, W., Proesmans, M., Dai, D., Van Gool, L.: Multi-task learning for dense prediction tasks: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 44(7), 3614–3633 (2021)
Vo, T.H., Lee, G.S., Yang, H.J., Kim, S.H.: Pyramid with super resolution for in-the-wild facial expression recognition. IEEE Access 8, 131988–132001 (2020)
Wang, C., Wang, S., Liang, G.: Identity-and pose-robust facial expression recognition through adversarial feature learning. In: Proceedings of the 27th ACM International Conference on Multimedia, pp. 238–246 (2019)
Wang, J., et al.: LipFormer: high-fidelity and generalizable talking face generation with a pre-learned facial codebook. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13844–13853 (2023)
Wang, K., Peng, X., Yang, J., Lu, S., Qiao, Y.: Suppressing uncertainties for large-scale facial expression recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6897–6906 (2020)
Wang, T.C., Mallya, A., Liu, M.Y.: One-shot free-view neural talking-head synthesis for video conferencing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10039–10049 (2021)
Wang, Y., Yang, D., Bremond, F., Dantcheva, A.: Latent image animator: learning to animate images via latent space navigation. arXiv preprint arXiv:2203.09043 (2022)
Wu, S., et al.: GANHead: towards generative animatable neural head avatars. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 437–447 (2023)
Wu, Z., Cui, J.: LA-Net: landmark-aware learning for reliable facial expression recognition under label noise. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 20698–20707 (2023)
Xie, H.X., Lo, L., Shuai, H.H., Cheng, W.H.: Au-assisted graph attention convolutional network for micro-expression recognition. In: Proceedings of the 28th ACM International Conference on Multimedia, pp. 2871–2880 (2020)
Xie, S., Hu, H., Chen, Y.: Facial expression recognition with two-branch disentangled generative adversarial network. IEEE Trans. Circ. Syst. Video Technol. 31(6), 2359–2371 (2020)
Xue, F., Wang, Q., Guo, G.: Transfer: learning relation-aware facial expression representations with transformers. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3601–3610 (2021)
Yang, H., Ciftci, U., Yin, L.: Facial expression recognition by de-expression residue learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2168–2177 (2018)
Yang, H., Yin, L., Zhou, Y., Gu, J.: Exploiting semantic embedding and visual feature for facial action unit detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10482–10491 (2021)
Yang, H., Zhang, Z., Yin, L.: Identity-adaptive facial expression recognition through expression regeneration using conditional generative adversarial networks. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 294–301. IEEE (2018)
Yang, K., Chen, K., Guo, D., Zhang, S.H., Guo, Y.C., Zhang, W.: Face2face \(\rho \): real-time high-resolution one-shot face reenactment. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13673, pp. 55–71. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19778-9_4
Yin, F., Zhang, Y., Cun, X., Cao, M., Fan, Y., Wang, X., Bai, Q., Wu, B., Wang, J., Yang, Y.: StyleHeat: one-shot high-resolution editable talking face generation via pre-trained StyleGAN. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13677, pp. 85–101. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19790-1_6
You, R., Guo, Z., Cui, L., Long, X., Bao, Y., Wen, S.: Cross-modality attention with semantic graph embedding for multi-label classification. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 12709–12716 (2020)
Yun, S., Han, D., Oh, S.J., Chun, S., Choe, J., Yoo, Y.: CutMix: regularization strategy to train strong classifiers with localizable features. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6023–6032 (2019)
Zeng, D., Lin, Z., Yan, X., Liu, Y., Wang, F., Tang, B.: Face2Exp: combating data biases for facial expression recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 20291–20300 (2022)
Zeng, H., Zhang, W., Chen, K., Zhang, Z., Li, L., Ding, Y.: Paste you into game: Towards expression and identity consistency face swapping. In: 2022 IEEE Conference on Games (CoG), pp. 1–8. IEEE (2022)
Zeng, H., Zhang, W., Chen, K., Zhang, Z., Li, L., Ding, Y.: Face identity and expression consistency for game character face swapping. Comput. Vis. Image Underst. 236, 103806 (2023)
Zeng, H., et al.: FlowFace: semantic flow-guided shape-aware face swapping. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 37, pp. 3367–3375 (2023)
Zhang, B., et al.: MetaPortrait: identity-preserving talking head generation with fast personalized adaptation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 22096–22105 (2023)
Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: beyond empirical risk minimization. arXiv preprint arXiv:1710.09412 (2017)
Zhang, J., et al.: FReeNet: multi-identity face reenactment. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5326–5335 (2020)
Zhang, W., Guo, Z., Chen, K., Li, L., Zhang, Z., Ding, Y.: Prior aided streaming network for multi-task affective recognitionat the 2nd abaw2 competition. arXiv preprint arXiv:2107.03708 (2021)
Zhang, W., Ji, X., Chen, K., Ding, Y., Fan, C.: Learning a facial expression embedding disentangled from identity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6759–6768 (2021)
Zhang, W., Li, L., Ding, Y., Chen, W., Deng, Z., Yu, X.: Detecting facial action units from global-local fine-grained expressions. IEEE Trans. Circ. Syst. Video Technol. (2023)
Zhang, X., et al.: BP4D-spontaneous: a high-resolution spontaneous 3D dynamic facial expression database. Image Vis. Comput. 32(10), 692–706 (2014)
Zhang, Y., Dong, W., Hu, B.G., Ji, Q.: Weakly-supervised deep convolutional neural network learning for facial action unit intensity estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2314–2323 (2018)
Zhang, Y., Zhao, R., Dong, W., Hu, B.G., Ji, Q.: Bilateral ordinal relevance multi-instance regression for facial action unit intensity estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7034–7043 (2018)
Zhang, Y., Yang, Q.: A survey on multi-task learning. IEEE Trans. Knowl. Data Eng. 34(12), 5586–5609 (2021)
Zhang, Z., et al.: Multimodal spontaneous emotion corpus for human behavior analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3438–3446 (2016)
Zhang, Z., Li, L., Ding, Y., Fan, C.: Flow-guided one-shot talking face generation with a high-resolution audio-visual dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3661–3670 (2021)
Zhao, J., Zhang, H.: Thin-plate spline motion model for image animation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3657–3666 (2022)
Zhao, K., Chu, W.S., Martinez, A.M.: Learning facial action units from web images with scalable weakly supervised clustering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2090–2099 (2018)
Zhao, K., Chu, W.S., De la Torre, F., Cohn, J.F., Zhang, H.: Joint patch and multi-label learning for facial action unit detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2207–2216 (2015)
Zhao, K., Chu, W.S., Zhang, H.: Deep region and multi-label learning for facial action unit detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3391–3399 (2016)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Liu, H. et al. (2025). Norface: Improving Facial Expression Analysis by Identity Normalization. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15113. Springer, Cham. https://doi.org/10.1007/978-3-031-73001-6_17
Download citation
DOI: https://doi.org/10.1007/978-3-031-73001-6_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-73000-9
Online ISBN: 978-3-031-73001-6
eBook Packages: Computer ScienceComputer Science (R0)