Abstract
Continual Test-Time Adaptation (CTTA) involves adapting a pre-trained source model to continually changing unsupervised target domains. In this paper, we systematically analyze the challenges of this task: online environment, unsupervised nature, and the risks of error accumulation and catastrophic forgetting under continual domain shifts. To address these challenges, we reshape the online data buffering and organizing mechanism for CTTA. We propose an uncertainty-aware buffering approach to identify and aggregate significant samples with high certainty from the unsupervised, single-pass data stream. Based on this, we propose a graph-based class relation preservation constraint to overcome catastrophic forgetting. Furthermore, a pseudo-target replay objective is used to mitigate error accumulation. Extensive experiments demonstrate the superiority of our method in both segmentation and classification CTTA tasks. Code is available at https://github.com/z1358/OBAO.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Boudiaf, M., Mueller, R., Ben Ayed, I., Bertinetto, L.: Parameter-free online test-time adaptation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8344–8353 (2022)
Brahma, D., Rai, P.: A probabilistic framework for lifelong test-time adaptation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3582–3591 (2023)
Burges, C., Ragno, R., Le, Q.: Learning to rank with nonsmooth cost functions. In: Advances in Neural Information Processing Systems, vol. 19 (2006)
Chakrabarty, G., Sreenivas, M., Biswas, S.: SANTA: source anchoring network and target alignment for continual test time adaptation. Trans. Mach. Learn. Res. (2023). https://openreview.net/forum?id=V7guVYzvE4
Chen, D., Wang, D., Darrell, T., Ebrahimi, S.: Contrastive test-time adaptation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 295–305 (2022)
Chen, H., Wang, Y., Hu, Q.: Multi-granularity regularized re-balancing for class incremental learning. IEEE Trans. Knowl. Data Eng. 35(7), 7263–7277 (2022)
Choi, S., Yang, S., Choi, S., Yun, S.: Improving test-time adaptation via shift-agnostic weight regularization and nearest source prototypes. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13693, pp. 440–458. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19827-4_26
Cicek, S., Soatto, S.: Unsupervised domain adaptation via regularized conditional alignment. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1416–1425 (2019)
Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3213–3223 (2016)
Croce, F., et al.: Robustbench: a standardized adversarial robustness benchmark. In: Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track (Round 2) (2021)
Cui, S., Wang, S., Zhuo, J., Su, C., Huang, Q., Tian, Q.: Gradually vanishing bridge for adversarial domain adaptation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12455–12464 (2020)
Döbler, M., Marsden, R.A., Yang, B.: Robust mean teacher for continual and gradual test-time adaptation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7704–7714 (2023)
Dong, S., Hong, X., Tao, X., Chang, X., Wei, X., Gong, Y.: Few-shot class-incremental learning via relation knowledge distillation. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 1255–1263 (2021)
Fan, Y., Wang, Y., Zhu, P., Hu, Q.: Dynamic sub-graph distillation for robust semi-supervised continual learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 11927–11935 (2024)
Gan, Y., et al.: Decorate the newcomers: visual domain prompt for continual test time adaptation. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 7595–7603 (2023)
Ganin, Y., Lempitsky, V.: Unsupervised domain adaptation by backpropagation. In: International Conference on Machine Learning, pp. 1180–1189. PMLR (2015)
Geirhos, R., et al.: Shortcut learning in deep neural networks. Nat. Mach. Intell. 2(11), 665–673 (2020)
Hendrycks, D., Dietterich, T.: Benchmarking neural network robustness to common corruptions and perturbations. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=HJz6tiCqYm
Hoffman, J., et al.: Cycada: cycle-consistent adversarial domain adaptation. In: International Conference on Machine Learning, pp. 1989–1998. PMLR (2018)
Hwang, S., Lee, S., Kim, S., Ok, J., Kwak, S.: Combating label distribution shift for active domain adaptation. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13693, pp. 549–566. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19827-4_32
Koh, P.W., et al.: Wilds: a benchmark of in-the-wild distribution shifts. In: International Conference on Machine Learning, pp. 5637–5664. PMLR (2021)
Lee, K., Kim, S., Kwak, S.: Cross-domain ensemble distillation for domain generalization. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13685, pp. 1–20. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19806-9_1
Li, H., Pan, S.J., Wang, S., Kot, A.C.: Domain generalization with adversarial feature learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5400–5409 (2018)
Li, S., Xie, B., Lin, Q., Liu, C.H., Huang, G., Wang, G.: Generalized domain conditioned adaptation network. IEEE Trans. Pattern Anal. Mach. Intell. 44(8), 4093–4109 (2021)
Li, S., Xie, M., Gong, K., Liu, C.H., Wang, Y., Li, W.: Transferable semantic augmentation for domain adaptation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11516–11525 (2021)
Li, Y., Wang, N., Shi, J., Liu, J., Hou, X.: Revisiting batch normalization for practical domain adaptation. arXiv preprint arXiv:1603.04779 (2016)
Liang, J., Hu, D., Feng, J.: Do we really need to access the source data? source hypothesis transfer for unsupervised domain adaptation. In: International Conference on Machine Learning, pp. 6028–6039. PMLR (2020)
Lin, H., et al.: Prototype-guided continual adaptation for class-incremental unsupervised domain adaptation. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13693, pp. 351–368. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19827-4_21
Liu, H., Long, M., Wang, J., Jordan, M.: Transferable adversarial training: a general approach to adapting deep classifiers. In: International Conference on Machine Learning, pp. 4013–4022. PMLR (2019)
Liu, J., et al.: ViDA: homeostatic visual domain adapter for continual test time adaptation. In: The Twelfth International Conference on Learning Representations (2024). https://openreview.net/forum?id=sJ88Wg5Bp5
Liu, Y., Kothari, P., Van Delft, B., Bellot-Gurlet, B., Mordan, T., Alahi, A.: Ttt++: When does self-supervised test-time training fail or thrive? In: Advance in Neural Information Processing System, vol. 34, pp. 21808–21820 (2021)
Long, M., Cao, Y., Wang, J., Jordan, M.: Learning transferable features with deep adaptation networks. In: International Conference on Machine Learning, pp. 97–105. PMLR (2015)
Long, M., Zhu, H., Wang, J., Jordan, M.I.: Deep transfer learning with joint adaptation networks. In: International Conference on Machine Learning, pp. 2208–2217. PMLR (2017)
Nguyen, A.T., Nguyen-Tang, T., Lim, S.N., Torr, P.H.: Tipi: test time adaptation with transformation invariance. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 24162–24171 (2023)
Niloy, F.F., Ahmed, S.M., Raychaudhuri, D.S., Oymak, S., Roy-Chowdhury, A.K.: Effective restoration of source knowledge in continual test time adaptation. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 2091–2100 (2024)
Niu, S., et al.: Efficient test-time model adaptation without forgetting. In: International Conference on Machine Learning, pp. 16888–16905. PMLR (2022)
Niu, S., et al.: Towards stable test-time adaptation in dynamic wild world. In: The Eleventh International Conference on Learning Representations (2023). https://openreview.net/forum?id=g2YraF75Tj
Patel, V.M., Gopalan, R., Li, R., Chellappa, R.: Visual domain adaptation: a survey of recent advances. IEEE Signal Process. Mag. 32(3), 53–69 (2015)
Peng, X., Bai, Q., Xia, X., Huang, Z., Saenko, K., Wang, B.: Moment matching for multi-source domain adaptation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1406–1415 (2019)
Press, O., Schneider, S., Kümmerer, M., Bethge, M.: Rdumb: a simple approach that questions our progress in continual test-time adaptation. In: Advances in Neural Information Processing Systems, vol. 36 (2023)
Sakaridis, C., Dai, D., Van Gool, L.: ACDC: the adverse conditions dataset with correspondences for semantic driving scene understanding. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10765–10775 (2021)
Schneider, S., Rusak, E., Eck, L., Bringmann, O., Brendel, W., Bethge, M.: Improving robustness against common corruptions by covariate shift adaptation. In: Advance in Neural Information Processing System, vol. 33, pp. 11539–11551 (2020)
Sójka, D., Cygert, S., Twardowski, B., Trzciński, T.: AR-TTA: a simple method for real-world continual test-time adaptation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) Workshops, pp. 3491–3495 (2023)
Song, J., Lee, J., Kweon, I.S., Choi, S.: Ecotta: memory-efficient continual test-time adaptation via self-distilled regularization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11920–11929 (2023)
Tan, M., et al.: Uncertainty-calibrated test-time model adaptation without forgetting. arXiv preprint arXiv:2403.11491 (2024)
Tao, X., Chang, X., Hong, X., Wei, X., Gong, Y.: Topology-preserving class-incremental learning. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020 XIX. LNCS, vol. 12364, pp. 254–270. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58529-7_16
Tao, X., Hong, X., Chang, X., Dong, S., Wei, X., Gong, Y.: Few-shot class-incremental learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2020)
Tao, X., Hong, X., Chang, X., Gong, Y.: Bi-objective continual learning: learning ‘new’ while consolidating ‘known’. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 5989–5996 (2020)
Tsai, Y.H., Hung, W.C., Schulter, S., Sohn, K., Yang, M.H., Chandraker, M.: Learning to adapt structured output space for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7472–7481 (2018)
Wang, D., Shelhamer, E., Liu, S., Olshausen, B., Darrell, T.: Tent: fully test-time adaptation by entropy minimization. In: International Conference on Learning Representations (2021). https://openreview.net/forum?id=uXl3bZLkr3c
Wang, Q., Fink, O., Van Gool, L., Dai, D.: Continual test-time domain adaptation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7201–7211 (2022)
Wang, S., Zhang, D., Yan, Z., Zhang, J., Li, R.: Feature alignment and uniformity for test time adaptation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 20050–20060 (2023)
Wang, Y., Ma, Z., Huang, Z., Wang, Y., Su, Z., Hong, X.: Isolation and impartial aggregation: a paradigm of incremental learning without interference. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 10209–10217 (2023)
Wang, Y., et al.: Continual test-time domain adaptation via dynamic sample selection. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), pp. 1701–1710 (2024)
Wei, Y., Ye, J., Huang, Z., Zhang, J., Shan, H.: Online prototype learning for online continual learning. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 18764–18774 (2023)
Xie, E., Wang, W., Yu, Z., Anandkumar, A., Alvarez, J.M., Luo, P.: Segformer: simple and efficient design for semantic segmentation with transformers. In: Beygelzimer, A., Dauphin, Y., Liang, P., Vaughan, J.W. (eds.) Advances in Neural Information Processing Systems (2021). https://openreview.net/forum?id=OG18MI5TRL
Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K.: Aggregated residual transformations for deep neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1492–1500 (2017)
Yang, X., Gu, Y., Wei, K., Deng, C.: Exploring safety supervision for continual test-time domain adaptation. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI-23, pp. 1649–1657. International Joint Conferences on Artificial Intelligence Organization (2023). https://doi.org/10.24963/ijcai.2023/183
Yang, Y., Soatto, S.: Fda: fourier domain adaptation for semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4085–4095 (2020)
Yao, X., et al.: Socialized learning: making each other better through multi-agent collaboration. In: Forty-First International Conference on Machine Learning (2024)
Yuan, L., Xie, B., Li, S.: Robust test-time adaptation in dynamic scenarios. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15922–15932 (2023)
Zagoruyko, S., Komodakis, N.: Wide residual networks. In: British Machine Vision Conference 2016. British Machine Vision Association (2016)
Zhang, J., Qi, L., Shi, Y., Gao, Y.: MVDG: a unified multi-view framework for domain generalization. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV. LNCS, vol. 13687, pp. 161–177. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19812-0_10
Zhang, Y., Wang, Z., He, W.: Class relationship embedded learning for source-free unsupervised domain adaptation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7619–7629 (2023)
Zhang, Y., Wang, Z., Li, J., Zhuang, J., Lin, Z.: Towards effective instance discrimination contrastive loss for unsupervised domain adaptation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 11388–11399 (2023)
Zhou, K., Liu, Z., Qiao, Y., Xiang, T., Loy, C.C.: Domain generalization: a survey. IEEE Trans. Pattern Anal. Mach. Intell. (2022)
Acknolwedgement
This work was funded in part by the National Natural Science Foundation of China (62076195, 62376070, 62206271, U20B2052), in part by the Fundamental Research Funds for the Central Universities (AUGA5710011522), and by the Pengcheng Laboratory Research Project No. PCL2023A08.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Zhu, Z. et al. (2025). Reshaping the Online Data Buffering and Organizing Mechanism for Continual Test-Time Adaptation. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15140. Springer, Cham. https://doi.org/10.1007/978-3-031-73007-8_24
Download citation
DOI: https://doi.org/10.1007/978-3-031-73007-8_24
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-73006-1
Online ISBN: 978-3-031-73007-8
eBook Packages: Computer ScienceComputer Science (R0)