Abstract
We introduce a simple yet effective approach for separating transmitted and reflected light. Our key insight is that the powerful novel view synthesis capabilities provided by modern inverse rendering methods (e.g., 3D Gaussian splatting) allow one to perform flash/no-flash reflection separation using unpaired measurements—this relaxation dramatically simplifies image acquisition over conventional paired flash/no-flash reflection separation methods. Through extensive real-world experiments, we demonstrate our method, Flash-Splat, accurately reconstructs both transmitted and reflected scenes in 3D. Our method outperforms existing 3D reflection separation methods, which do not leverage illumination control, by a large margin.
M. Xie and H. Cai—Equal Contribution.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alayrac, J.B., Carreira, J., Zisserman, A.: The visual centrifuge: model-free layered video representations. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2457–2466 (2019)
Arvanitopoulos, N., Achanta, R., Susstrunk, S.: Single image reflection suppression. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4498–4506 (2017)
Baker, A.H., Pinard, A., Hammerling, D.M.: On a structural similarity index approach for floating-point data. IEEE Trans. Vis. Comput. Graph. 1–13 (2023)
Barron, J.T., Mildenhall, B., Verbin, D., Srinivasan, P.P., Hedman, P.: Mip-NeRF 360: unbounded anti-aliased neural radiance fields. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5470–5479 (2022)
Chen, A., Xu, Z., Geiger, A., Yu, J., Su, H.: TensoRF: tensorial radiance fields. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision – ECCV 2022. ECCV 2022. LNCS, vol.13692, pp. 333–350. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19824-3_20
Chugunov, I., Shustin, D., Yan, R., Lei, C., Heide, F.: Neural spline fields for burst image fusion and layer separation. CVPR (2024)
Dong, Z., Xu, K., Yang, Y., Bao, H., Xu, W., Lau, R.W.: Location-aware single image reflection removal. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5017–5026 (2021)
Fan, Q., Yang, J., Hua, G., Chen, B., Wipf, D.: A generic deep architecture for single image reflection removal and image smoothing. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3238–3247 (2017)
Farid, H., Adelson, E.H.: Separating reflections and lighting using independent components analysis. In: Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149), vol. 1, pp. 262–267. IEEE (1999)
Fridovich-Keil, S., Meanti, G., Warburg, F.R., Recht, B., Kanazawa, A.: K-planes: explicit radiance fields in space, time, and appearance. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12479–12488 (2023)
Gandelsman, Y., Shocher, A., Irani, M.: Double-DIP: unsupervised image decomposition via coupled deep-image-priors. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11026–11035 (2019)
Guo, X., Cao, X., Ma, Y.: Robust separation of reflection from multiple images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2187–2194 (2014)
Guo, Y.C., Kang, D., Bao, L., He, Y., Zhang, S.H.: NeRFReN: neural radiance fields with reflections. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 18409–18418 (2022)
Hariharan, B., Arbeláez, P., Girshick, R., Malik, J.: Hypercolumns for object segmentation and fine-grained localization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 447–456 (2015)
Hong, Y., Zheng, Q., Zhao, L., Jiang, X., Kot, A.C., Shi, B.: Panoramic image reflection removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7762–7771 (2021)
Hong, Y., Zheng, Q., Zhao, L., Jiang, X., Kot, A.C., Shi, B.: PAR2 NET: end-to-end panoramic image reflection removal. IEEE Trans. Pattern Anal. Mach. Intell. (2023)
Hu, Q., Guo, X.: Trash or treasure? An interactive dual-stream strategy for single image reflection separation. Adv. Neural. Inf. Process. Syst. 34, 24683–24694 (2021)
Hu, Q., Guo, X.: Single image reflection separation via component synergy. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 13138–13147 (2023)
Kee, E., Pikielny, A., Blackburn-Matzen, K., Levoy, M.: Removing reflections from raw photos. ArXiv abs/2404.14414 (2024)
Kerbl, B., Kopanas, G., Leimkühler, T., Drettakis, G.: 3D gaussian splatting for real-time radiance field rendering. ACM Trans. Graph. 42(4) (2023)
Kim, S., Huo, Y., Yoon, S.E.: Single image reflection removal with physically-based rendering. arXiv preprint arXiv:1904.11934 (2019)
Kong, N., Tai, Y.W., Shin, J.S.: A physically-based approach to reflection separation: from physical modeling to constrained optimization. IEEE Trans. Pattern Anal. Mach. Intell. 36(2), 209–221 (2013)
Kong, N., Tai, Y.W., Shin, S.Y.: High-quality reflection separation using polarized images. IEEE Trans. Image Process. 20(12), 3393–3405 (2011)
Lei, C., Chen, Q.: Robust reflection removal with reflection-free flash-only cues. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14811–14820 (2021)
Lei, C., Huang, X., Zhang, M., Yan, Q., Sun, W., Chen, Q.: Polarized reflection removal with perfect alignment in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1750–1758 (2020)
Levin, A., Weiss, Y.: User assisted separation of reflections from a single image using a sparsity prior. IEEE Trans. Pattern Anal. Mach. Intell. 29(9), 1647–1654 (2007)
Levin, A., Zomet, A., Weiss, Y.: Learning to perceive transparency from the statistics of natural scenes. Adv. Neural Inf. Process. Syst. 15 (2002)
Levin, A., Zomet, A., Weiss, Y.: Separating reflections from a single image using local features. In: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004, vol. 1, p. I. IEEE (2004)
Li, C., Yang, Y., He, K., Lin, S., Hopcroft, J.E.: Single image reflection removal through cascaded refinement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3565–3574 (2020)
Li, R., Qiu, S., Zang, G., Heidrich, W.: Reflection separation via multi-bounce polarization state tracing. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12358, pp. 781–796. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58601-0_46
Li, Y., Brown, M.S.: Exploiting reflection change for automatic reflection removal. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2432–2439 (2013)
Li, Y., Liu, M., Yi, Y., Li, Q., Ren, D., Zuo, W.: Two-stage single image reflection removal with reflection-aware guidance. Appl. Intell. 1–16 (2023)
Liu, Y.L., Lai, W.S., Yang, M.H., Chuang, Y.Y., Huang, J.B.: Learning to see through obstructions. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14215–14224 (2020)
Lyu, Y., Cui, Z., Li, S., Pollefeys, M., Shi, B.: Reflection separation using a pair of unpolarized and polarized images. Adv. Neural Inf. Process. Syst. 32 (2019)
Mildenhall, B., Hedman, P., Martin-Brualla, R., Srinivasan, P.P., Barron, J.T.: Nerf in the dark: high dynamic range view synthesis from noisy raw images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16190–16199 (2022)
Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: NeRF: representing scenes as neural radiance fields for view synthesis. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 405–421. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_24
Nayar, S.K., Fang, X.S., Boult, T.: Separation of reflection components using color and polarization. Int. J. Comput. Vis. 21(3), 163–186 (1997)
Qiu, J., Jiang, P.T., Zhu, Y., Yin, Z.X., Cheng, M.M., Ren, B.: Looking through the glass: neural surface reconstruction against high specular reflections. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 20823–20833 (2023)
Ranftl, R., Bochkovskiy, A., Koltun, V.: Vision transformers for dense prediction. ArXiv preprint (2021)
Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: mixing datasets for zero-shot cross-dataset transfer. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) (2020)
Schönberger, J.L., Zheng, E., Frahm, J.-M., Pollefeys, M.: Pixelwise view selection for unstructured multi-view stereo. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 501–518. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_31
Shih, Y., Krishnan, D., Durand, F., Freeman, W.T.: Reflection removal using ghosting cues. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3193–3201 (2015)
Sinha, S.N., Kopf, J., Goesele, M., Scharstein, D., Szeliski, R.: Image-based rendering for scenes with reflections. ACM Trans. Graph. (TOG) 31(4), 1–10 (2012)
Wan, R., Shi, B., Duan, L.Y., Tan, A.H., Gao, W., Kot, A.C.: Region-aware reflection removal with unified content and gradient priors. IEEE Trans. Image Process. 27(6), 2927–2941 (2018)
Wan, R., Shi, B., Duan, L.Y., Tan, A.H., Kot, A.C.: CRRN: multi-scale guided concurrent reflection removal network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4777–4785 (2018)
Wan, R., Shi, B., Li, H., Duan, L.Y., Kot, A.C.: Reflection scene separation from a single image. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2398–2406 (2020)
Wan, R., Shi, B., Li, H., Duan, L.Y., Kot, A.C.: Face image reflection removal. Int. J. Comput. Vis. 129, 385–399 (2021)
Wang, P., Liu, L., Liu, Y., Theobalt, C., Komura, T., Wang, W.: Neus: learning neural implicit surfaces by volume rendering for multi-view reconstruction. NeurIPS (2021)
Wang, Y., Han, Q., Habermann, M., Daniilidis, K., Theobalt, C., Liu, L.: Neus2: fast learning of neural implicit surfaces for multi-view reconstruction. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3295–3306 (2023)
Wei, K., Yang, J., Fu, Y., Wipf, D., Huang, H.: Single image reflection removal exploiting misaligned training data and network enhancements. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8178–8187 (2019)
Wen, Q., Tan, Y., Qin, J., Liu, W., Han, G., He, S.: Single image reflection removal beyond linearity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3771–3779 (2019)
Xia, Z., Gharbi, M., Perazzi, F., Sunkavalli, K., Chakrabarti, A.: Deep denoising of flash and no-flash pairs for photography in low-light environments. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2063–2072 (2020)
Xia, Z., Lawrence, J., Achar, S.: A dark flash normal camera. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 2410–2419 (2020)
Xue, T., Rubinstein, M., Liu, C., Freeman, W.T.: A computational approach for obstruction-free photography. ACM Trans. Graph. (TOG) 34(4), 1–11 (2015)
Yang, J., Gong, D., Liu, L., Shi, Q.: Seeing deeply and bidirectionally: a deep learning approach for single image reflection removal. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 654–669 (2018)
Yang, Y., Ma, W., Zheng, Y., Cai, J.F., Xu, W.: Fast single image reflection suppression via convex optimization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8141–8149 (2019)
Zhang, X., Ng, R., Chen, Q.: Single image reflection separation with perceptual losses. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4786–4794 (2018)
Zheng, Q., Shi, B., Chen, J., Jiang, X., Duan, L.Y., Kot, A.C.: Single image reflection removal with absorption effect. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13395–13404 (2021)
Zhu, Z., Fan, Z., Jiang, Y., Wang, Z.: FSGS: real-time few-shot view synthesis using gaussian splatting. arXiv preprint arXiv:2312.00451 (2023)
Zou, Z., Lei, S., Shi, T., Shi, Z., Ye, J.: Deep adversarial decomposition: a unified framework for separating superimposed images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12806–12816 (2020)
Acknowledgements
This work was supported in part by AFOSR Young Investigator Program Award no. FA9550-22-1-0208, ONR Award no. N00014-23-1-2752, NSF CAREER Award no. 2339616, the Joint Directed Energy Transition Office, and a gift from Dolby Labs. We thank Kevin Zhang and Yi-Ting Chen for helpful discussions.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Xie, M. et al. (2025). Flash-Splat: 3D Reflection Removal with Flash Cues and Gaussian Splats. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15140. Springer, Cham. https://doi.org/10.1007/978-3-031-73007-8_8
Download citation
DOI: https://doi.org/10.1007/978-3-031-73007-8_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-73006-1
Online ISBN: 978-3-031-73007-8
eBook Packages: Computer ScienceComputer Science (R0)