Abstract
Optimizing a text-to-image diffusion model with a given reward function is an important but underexplored research area. In this study, we propose Deep Reward Tuning (DRTune), an algorithm that directly supervises the final output image of a text-to-image diffusion model and back-propagates through the iterative sampling process to the input noise. We find that training earlier steps in the sampling process is crucial for low-level rewards, and deep supervision can be achieved efficiently and effectively by stopping the gradient of the denoising network input. DRTune is extensively evaluated on various reward models. It consistently outperforms other algorithms, particularly for low-level control signals, where all shallow supervision methods fail. Additionally, we fine-tune Stable Diffusion XL 1.0 (SDXL 1.0) model via DRTune to optimize Human Preference Score v2.1, resulting in the Favorable Diffusion XL 1.0 (FDXL 1.0) model. FDXL 1.0 significantly enhances image quality compared to SDXL 1.0 and reaches comparable quality compared with Midjourney v5.2.
X. Wu and Y. Hao—Contributed equally to this work.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bai, Y., et al.: Training a helpful and harmless assistant with reinforcement learning from human feedback. arXiv preprint arXiv:2204.05862 (2022)
Black, K., Janner, M., Du, Y., Kostrikov, I., Levine, S.: Training diffusion models with reinforcement learning. arXiv preprint arXiv:2305.13301 (2023)
Clark, K., Vicol, P., Swersky, K., Fleet, D.J.: Directly fine-tuning diffusion models on differentiable rewards. arXiv preprint arXiv:2309.17400 (2023)
Fan, Y., et al.: DPOK: reinforcement learning for fine-tuning text-to-image diffusion models. arXiv preprint arXiv:2305.16381 (2023)
Goodfellow, I., et al.: Generative adversarial networks. Commun. ACM 63(11), 139–144 (2020)
Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs trained by a two time-scale update rule converge to a local Nash equilibrium. In: NeurIPS (2017)
Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. In: NeurIPS, vol. 33, pp. 6840–6851 (2020)
Hu, E.J., et al.: LoRA: low-rank adaptation of large language models. arXiv preprint arXiv:2106.09685 (2021)
Ilharco, G., et al.: Openclip (2021). https://doi.org/10.5281/zenodo.5143773, if you use this software, please cite it as below
Kim, G., Kwon, T., Ye, J.C.: DiffusionCLIP: text-guided diffusion models for robust image manipulation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2426–2435 (2022)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
Kirstain, Y., Polyak, A., Singer, U., Matiana, S., Penna, J., Levy, O.: Pick-a-Pic: an open dataset of user preferences for text-to-image generation. arXiv preprint arXiv:2305.01569 (2023)
Lee, K., et al.: Aligning text-to-image models using human feedback. arXiv preprint arXiv:2302.12192 (2023)
Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101 (2017)
Lu, C., Zhou, Y., Bao, F., Chen, J., Li, C., Zhu, J.: DPM-solver: a fast ode solver for diffusion probabilistic model sampling in around 10 steps. In: Advances in Neural Information Processing Systems, vol. 35, pp. 5775–5787 (2022)
Lu, C., Zhou, Y., Bao, F., Chen, J., Li, C., Zhu, J.: DPM-solver++: fast solver for guided sampling of diffusion probabilistic models. arXiv preprint arXiv:2211.01095 (2022)
Murray, N., Marchesotti, L., Perronnin, F.: AVA: a large-scale database for aesthetic visual analysis. In: CVPR, pp. 2408–2415 (2012)
Ouyang, L., et al.: Training language models to follow instructions with human feedback. In: NeurIPS, vol. 35, pp. 27730–27744 (2022)
Piao, J., Sun, K., Wang, Q., Lin, K.Y., Li, H.: Inverting generative adversarial renderer for face reconstruction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15619–15628 (2021)
Podell, D., et al.: SDXL: improving latent diffusion models for high-resolution image synthesis. arXiv preprint arXiv:2307.01952 (2023)
Prabhudesai, M., Goyal, A., Pathak, D., Fragkiadaki, K.: Aligning text-to-image diffusion models with reward backpropagation. arXiv preprint arXiv:2310.03739 (2023)
Radford, A., et al.: Learning transferable visual models from natural language supervision. In: ICML (2021)
Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., Chen, M.: Hierarchical text-conditional image generation with CLIP latents. arXiv abs/2204.06125 (2022)
Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, vol. 28 (2015)
Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution image synthesis with latent diffusion models. In: CVPR, pp. 10674–10685 (2022)
Ruiz, N., Li, Y., Jampani, V., Pritch, Y., Rubinstein, M., Aberman, K.: DreamBooth: fine tuning text-to-image diffusion models for subject-driven generation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 22500–22510 (2023)
Saharia, C., et al.: Photorealistic text-to-image diffusion models with deep language understanding. In: NeurIPS, vol. 35, pp. 36479–36494 (2022)
Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X.: Improved techniques for training GANs. In: Advances in Neural Information Processing Systems, vol. 29 (2016)
Schuhmann, C.: CLIP+MLP Aesthetic Score Predictor (2022). https://github.com/christophschuhmann/improved-aesthetic-predictor
Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., Ganguli, S.: Deep unsupervised learning using nonequilibrium thermodynamics. In: International Conference on Machine Learning, pp. 2256–2265. PMLR (2015)
Song, J., Meng, C., Ermon, S.: Denoising diffusion implicit models. arXiv preprint arXiv:2010.02502 (2020)
Stiennon, N., et al.: Learning to summarize with human feedback. In: Advances in Neural Information Processing Systems, vol. 33, pp. 3008–3021 (2020)
Sun, K., Wu, S., Huang, Z., Zhang, N., Wang, Q., Li, H.: Controllable 3D face synthesis with conditional generative occupancy fields. In: Advances in Neural Information Processing Systems, vol. 35, pp. 16331–16343 (2022)
Sun, K., Wu, S., Zhang, N., Huang, Z., Wang, Q., Li, H.: CGOF++: controllable 3D face synthesis with conditional generative occupancy fields. IEEE Trans. Pattern Anal. Mach. Intell. (2023)
Teed, Z., Deng, J.: RAFT: recurrent all-pairs field transforms for optical flow. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12347, pp. 402–419. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58536-5_24
Wallace, B., Gokul, A., Ermon, S., Naik, N.: End-to-end diffusion latent optimization improves classifier guidance. arXiv preprint arXiv:2303.13703 (2023)
Watson, D., Chan, W., Ho, J., Norouzi, M.: Learning fast samplers for diffusion models by differentiating through sample quality. In: International Conference on Learning Representations (2021)
Wu, X., et al.: Human preference score v2: a solid benchmark for evaluating human preferences of text-to-image synthesis. arXiv preprint arXiv:2306.09341 (2023)
Wu, X., Sun, K., Zhu, F., Zhao, R., Li, H.: Better aligning text-to-image models with human preference. arXiv preprint arXiv:2303.14420 (2023)
Wu, X., Sun, K., Zhu, F., Zhao, R., Li, H.: Human preference score: better aligning text-to-image models with human preference. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2096–2105 (2023)
Xu, J., et al.: ImageReward: learning and evaluating human preferences for text-to-image generation (2023)
Zhang, H., et al.: DINO: DETR with improved denoising anchor boxes for end-to-end object detection. arXiv preprint arXiv:2203.03605 (2022)
Zhang, L., Rao, A., Agrawala, M.: Adding conditional control to text-to-image diffusion models. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3836–3847 (2023)
Zhu, X., Su, W., Lu, L., Li, B., Wang, X., Dai, J.: Deformable DETR: deformable transformers for end-to-end object detection. arXiv preprint arXiv:2010.04159 (2020)
Ziegler, D.M., et al.: Fine-tuning language models from human preferences. arXiv preprint arXiv:1909.08593 (2019)
Acknowledgement
This project is funded in part by National Key R&D Program of China Project 2022ZD0161100, by the Centre for Perceptual and Interactive Intelligence (CPII) Ltd under the Innovation and Technology Commission (ITC)’s InnoHK, by Smart Traffic Fund PSRI/76/2311/PR, by RGC General Research Fund Project 14204021. Hongsheng Li is a PI of CPII under the InnoHK.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Wu, X. et al. (2025). Deep Reward Supervisions for Tuning Text-to-Image Diffusion Models. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15141. Springer, Cham. https://doi.org/10.1007/978-3-031-73010-8_7
Download citation
DOI: https://doi.org/10.1007/978-3-031-73010-8_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-73009-2
Online ISBN: 978-3-031-73010-8
eBook Packages: Computer ScienceComputer Science (R0)