Abstract
Unsupervised 3D keypoints estimation from Point Cloud Data (PCD) is a complex task, even more challenging when an object shape is deforming. As keypoints should be semantically and geometrically consistent across all the 3D frames – each keypoint should be anchored to a specific part of the deforming shape irrespective of intrinsic and extrinsic motion. This paper presents, “SelfGeo”, a self-supervised method that computes persistent 3D keypoints of non-rigid objects from arbitrary PCDs without the need of human annotations. The gist of SelfGeo is to estimate keypoints between frames that respect invariant properties of deforming bodies. Our main contribution is to enforce that keypoints deform along with the shape while keeping constant geodesic distances among them. This principle is then propagated to the design of a set of losses which minimization let emerge repeatable keypoints in specific semantic locations of the non-rigid shape. We show experimentally that the use of geodesic has a clear advantage in challenging dynamic scenes and with different classes of deforming shapes (humans and animals). Code and data are available at: https://github.com/IIT-PAVIS/SelfGeo.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Attaiki, S., Li, L., Ovsjanikov, M.: Generalizable local feature pre-training for deformable shape analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13650–13661 (2023)
Attaiki, S., Ovsjanikov, M.: NCP: neural correspondence prior for effective unsupervised shape matching. Adv. Neural. Inf. Process. Syst. 35, 28842–28857 (2022)
Bai, Y., Wang, A., Kortylewski, A., Yuille, A.: CoKe: contrastive learning for robust keypoint detection. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 65–74 (2023)
Chen, B., Abbeel, P., Pathak, D.: Unsupervised learning of visual 3D keypoints for control. In: International Conference on Machine Learning, pp. 1539–1549 (2021)
Cosmo, L., Minello, G., Bronstein, M., Rodolà, E., Rossi, L., Torsello, A.: 3D shape analysis through a quantum lens: the average mixing kernel signature. Int. J. Comput. Vision 130(6), 1474–1493 (2022)
Cosmo, L., Norelli, A., Halimi, O., Kimmel, R., Rodolà, E.: LIMP: learning latent shape representations with metric preservation priors. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020, Part III. LNCS, vol. 12348, pp. 19–35. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58580-8_2
Dai, X., Li, S., Zhao, Q., Yang, H.: Animal pose estimation based on 3D priors. Appl. Sci. 13(3), 1466 (2023)
Fernandez-Labrador, C., Chhatkuli, A., Paudel, D.P., Guerrero, J.J., Demonceaux, C., Gool, L.V.: Unsupervised learning of category-specific symmetric 3D keypoints from point sets. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12370, pp. 546–563. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58595-2_33
Gupta, A., Hoffmann, P.F., Prepelitǎ, S., Robinson, P., Ithapu, V.K., Alon, D.L.: Learning to personalize equalization for high-fidelity spatial audio reproduction. In: ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1–5. IEEE (2023)
Halimi, O., Litany, O., Rodola, E., Bronstein, A.M., Kimmel, R.: Unsupervised learning of dense shape correspondence. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4370–4379 (2019)
Haque, A., Peng, B., Luo, Z., Alahi, A., Yeung, S., Fei-Fei, L.: Towards viewpoint invariant 3D human pose estimation. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016, Part I. LNCS, vol. 9905, pp. 160–177. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_10
Huang, K., et al.: Skeleton-based coordinate system construction method for non-cooperative targets. Measurement 226, 114128 (2024)
Jakab, T., Tucker, R., Makadia, A., Wu, J., Snavely, N., Kanazawa, A.: KeypointDeformer: unsupervised 3D keypoint discovery for shape control. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12783–12792 (2021)
Kim, S., Joo, M., Lee, J., Ko, J., Cha, J., Kim, H.J.: Semantic-aware implicit template learning via part deformation consistency. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 593–603 (2023)
Li, J., Lee, G.H.: USIP: unsupervised stable interest point detection from 3D point clouds. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 361–370 (2019)
Li, Y., Takehara, H., Taketomi, T., Zheng, B., Nießner, M.: 4DComplete: non-rigid motion estimation beyond the observable surface. In: IEEE International Conference on Computer Vision (ICCV) (2021)
Loper, M., Mahmood, N., Romero, J., Pons-Moll, G., Black, M.J.: SMPL: a skinned multi-person linear model. ACM Trans. Graph. (TOG) 34(6), 1–16 (2015)
Ma, Q., et al.: Learning to dress 3D people in generative clothing. In: Computer Vision and Pattern Recognition (CVPR) (2020)
Maharjan, A., Yuan, X.: Registration of human point set using automatic key point detection and region-aware features. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 741–749 (2022)
Mohammadi, S.S., Wang, Y., Del Bue, A.: PointView-GCN: 3D shape classification with multi-view point clouds. In: 2021 IEEE International Conference on Image Processing (ICIP), pp. 3103–3107. IEEE (2021)
Qi, C.R., Su, H., Mo, K., Guibas, L.J.: PointNet: deep learning on point sets for 3D classification and segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 652–660 (2017)
Qi, C.R., Yi, L., Su, H., Guibas, L.J.: PointNet++: deep hierarchical feature learning on point sets in a metric space. In: Advances in Neural Information Processing Systems, vol. 30 (2017)
Saleh, M., Wu, S.C., Cosmo, L., Navab, N., Busam, B., Tombari, F.: Bending graphs: hierarchical shape matching using gated optimal transport. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11757–11767 (2022)
Sengupta, A., Bartoli, A.: Totem NRSfM: object-wise non-rigid structure-from-motion with a topological template. Int. J. Comput. Vision 1–42 (2024)
Shi, J., Yang, H., Carlone, L.: Optimal and robust category-level perception: object pose and shape estimation from 2-D and 3-D semantic keypoints. IEEE Trans. Robot. (2023)
Shi, R., Xue, Z., You, Y., Lu, C.: Skeleton merger: an unsupervised aligned keypoint detector. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 43–52 (2021)
Su, S.Y., Yu, F., Zollhöfer, M., Rhodin, H.: A-NeRF: articulated neural radiance fields for learning human shape, appearance, and pose. Adv. Neural. Inf. Process. Syst. 34, 12278–12291 (2021)
Sun, P., et al.: Scalability in perception for autonomous driving: waymo open dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2446–2454 (2020)
Suwajanakorn, S., Snavely, N., Tompson, J.J., Norouzi, M.: Discovery of latent 3D keypoints via end-to-end geometric reasoning. In: Advances in Neural Information Processing Systems, vol. 31 (2018)
Tan, F., et al.: HumanGPS: geodesic preserving feature for dense human correspondences. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1820–1830 (2021)
Tang, J., Gong, Z., Yi, R., Xie, Y., Ma, L.: Lake-net: topology-aware point cloud completion by localizing aligned keypoints. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1726–1735 (2022)
Wang, Q., Kou, C., Liu, P.: Keypoint extraction of auroral arc using curvature-constrained pointNet++. In: Proceedings of the 2022 5th International Conference on Artificial Intelligence and Pattern Recognition, pp. 462–467 (2022)
Weng, Z., Gorban, A.S., Ji, J., Najibi, M., Zhou, Y., Anguelov, D.: 3D human keypoints estimation from point clouds in the wild without human labels. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1158–1167 (2023)
Xue, Z., Yuan, Z., Wang, J., Wang, X., Gao, Y., Xu, H.: USEEK: unsupervised SE (3)-equivariant 3D keypoints for generalizable manipulation. In: 2023 IEEE International Conference on Robotics and Automation (ICRA), pp. 1715–1722. IEEE (2023)
Yang, J., et al.: Object wake-up: 3D object rigging from a single image. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13662, pp. 311–327. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20086-1_18
Yang, Z., Litany, O., Birdal, T., Sridhar, S., Guibas, L.: Continuous geodesic convolutions for learning on 3D shapes. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 134–144 (2021)
You, Y., Liu, W., Ze, Y., Li, Y.L., Wang, W., Lu, C.: UKPGAN: a general self-supervised keypoint detector. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 17042–17051 (2022)
You, Y., et al.: PRIN/SPRIN: on extracting point-wise rotation invariant features. IEEE Trans. Pattern Anal. Mach. Intell. 44(12), 9489–9502 (2021)
Yuan, H., Zhao, C., Fan, S., Jiang, J., Yang, J.: Unsupervised learning of 3D semantic keypoints with mutual reconstruction. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13662, pp. 534–549. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20086-1_31
Zanfir, A., Zanfir, M., Gorban, A., Ji, J., Zhou, Y., Anguelov, D., Sminchisescu, C.: Hum3Dil: semi-supervised multi-modal 3D humanpose estimation for autonomous driving. In: Conference on Robot Learning, pp. 1114–1124. PMLR (2023)
Zhong, C., et al.: SNAKE: shape-aware neural 3D keypoint field. Adv. Neural. Inf. Process. Syst. 35, 7052–7064 (2022)
Zhong, C., et al.: 3D implicit transporter for temporally consistent keypoint discovery. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3869–3880 (2023)
Zhou, B., et al.: ClothesNet: an information-rich 3D garment model repository with simulated clothes environment. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 20428–20438 (2023)
Zohaib, M., Del Bue, A.: SC3K: self-supervised and coherent 3D keypoints estimation from rotated, noisy, and decimated point cloud data. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 22509–22519 (2023)
Zohaib, M., Padalkar, M.G., Morerio, P., Taiana, M., Del Bue, A.: CDHN: cross-domain hallucination network for 3D keypoints estimation. Available at SSRN 4349267 (2023)
Zohaib, M., Taiana, M., Padalkar, M.G., Del Bue, A.: 3D key-points estimation from single-view RGB images. In: Sclaroff, S., Distante, C., Leo, M., Farinella, G.M., Tombari, F. (eds.) ICIAP 2022. LNCS, vol. 13232, pp. 27–38. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-06430-2_3
Acknowledgements
We would like to acknowledge Pietro Morerio for fruitful discussions. This work was carried out within the frameworks of the project “RAISE - Robotics, and AI for Socio-economic Empowerment” and the PRIN 2022 project n. 2022AL45R2 (EYE-FI.AI, CUP H53D2300350-0001). This work has been supported by European Union - NextGenerationEU.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Zohaib, M., Cosmo, L., Del Bue, A. (2025). SelfGeo: Self-supervised and Geodesic-Consistent Estimation of Keypoints on Deformable Shapes. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15143. Springer, Cham. https://doi.org/10.1007/978-3-031-73013-9_5
Download citation
DOI: https://doi.org/10.1007/978-3-031-73013-9_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-73012-2
Online ISBN: 978-3-031-73013-9
eBook Packages: Computer ScienceComputer Science (R0)