Skip to main content

TreeSBA: Tree-Transformer for Self-supervised Sequential Brick Assembly

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15144))

Included in the following conference series:

  • 311 Accesses

Abstract

Inferring step-wise actions to assemble 3D objects with primitive bricks from images is a challenging task due to complex constraints and the vast number of possible combinations. Recent studies have demonstrated promising results on sequential LEGO brick assembly through the utilization of LEGO-Graph modeling to predict sequential actions. However, existing approaches are class-specific and require significant computational and 3D annotation resources. In this work, we first propose a computationally efficient breadth-first search (BFS) LEGO-Tree structure to model the sequential assembly actions by considering connections between consecutive layers. Based on the LEGO-Tree structure, we then design a class-agnostic tree-transformer framework to predict the sequential assembly actions from the input multi-view images. A major challenge of the sequential brick assembly task is that the step-wise action labels are costly and tedious to obtain in practice. We mitigate this problem by leveraging synthetic-to-real transfer learning. Specifically, our model is first pre-trained on synthetic data with full supervision from the available action labels. We then circumvent the requirement for action labels in the real data by proposing an action-to-silhouette projection that replaces action labels with input image silhouettes for self-supervision. Without any annotation on the real data, our model outperforms existing methods with 3D supervision by 7.8% and 11.3% in mIoU on the MNIST and ModelNet Construction datasets, respectively.

M. Guo, C. Li—Equal Contribution

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arsalan Soltani, A., Huang, H., Wu, J., Kulkarni, T.D., Tenenbaum, J.B.: Synthesizing 3D shapes via modeling multi-view depth maps and silhouettes with deep generative networks. In: CVPR (2017)

    Google Scholar 

  2. Brochu, E., Cora, V.M., De Freitas, N.: A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning. In: arXiv preprint arXiv:1012.2599 (2010)

  3. Chang, A.X., et al.: Shapenet: an information-rich 3D model repository. In: arXiv preprint arXiv:1512.03012 (2015)

  4. Chen, Y.C., Li, H., Turpin, D., Jacobson, A., Garg, A.: Neural shape mating: Self-supervised object assembly with adversarial shape priors. In: CVPR (2022)

    Google Scholar 

  5. Choy, C.B., Xu, D., Gwak, J., Chen, K., Savarese, S.: 3d-r2n2: a unified approach for single and multi-view 3D object reconstruction. In: ECCV (2016)

    Google Scholar 

  6. Chung, H., et al.: Brick-by-brick: combinatorial construction with deep reinforcement learning. In: NeurIPS (2021)

    Google Scholar 

  7. Curless, B., Levoy, M.: A volumetric method for building complex models from range images. In: SIGGRAPH (1996)

    Google Scholar 

  8. Debevec, P.E., Taylor, C.J., Malik, J.: Modeling and rendering architecture from photographs: a hybrid geometry-and image-based approach. In: SIGGRAPH (1996)

    Google Scholar 

  9. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. ICLR (2021)

    Google Scholar 

  10. Eilers, S.: The lego counting problem. The American Mathematical Monthly (2016)

    Google Scholar 

  11. Fan, H., Su, H., Guibas, L.J.: A point set generation network for 3D object reconstruction from a single image. In: CVPR (2017)

    Google Scholar 

  12. Gadelha, M., et al.: Learning generative models of shape handles. In: CVPR (2020)

    Google Scholar 

  13. Gower, R., Heydtmann, A., Petersen, H.: Lego: Automated model construction (1998)

    Google Scholar 

  14. Jiang, L., Shi, S., Qi, X., Jia, J.: Gal: geometric adversarial loss for single-view 3d-object reconstruction. In: ECCV (2018)

    Google Scholar 

  15. Kar, A., Häne, C., Malik, J.: Learning a multi-view stereo machine. In: NeurIPS (2017)

    Google Scholar 

  16. Kim, J., Chung, H., Lee, J., Cho, M., Park, J.: Combinatorial 3D shape generation via sequential assembly. In: NeurIPS Workshop (2020)

    Google Scholar 

  17. Lee, S., Kim, J., Kim, J.W., Moon, B.R.: Finding an optimal lego® brick layout of voxelized 3D object using a genetic algorithm. In: The Genetic and Evolutionary Computation Conference (GECCO) (2015)

    Google Scholar 

  18. Lennon, K., et al.: Image2lego: Customized lego set generation from images. arXiv preprint arXiv:2108.08477 (2021)

  19. Li, Y., Mo, K., Shao, L., Sung, M., Guibas, L.: Learning 3D part assembly from a single image. In: ECCV (2020)

    Google Scholar 

  20. Li, Y., Vinyals, O., Dyer, C., Pascanu, R., Battaglia, P.: Learning deep generative models of graphs. arXiv preprint arXiv:1803.03324 (2018)

  21. Mandikal, P., Navaneet, K., Agarwal, M., Babu, R.V.: 3d-lmnet: latent embedding matching for accurate and diverse 3D point cloud reconstruction from a single image. In: BMVC (2018)

    Google Scholar 

  22. Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: Nerf: representing scenes as neural radiance fields for view synthesis. In: ECCV (2020)

    Google Scholar 

  23. Park, J.J., Florence, P., Straub, J., Newcombe, R., Lovegrove, S.: Deepsdf: learning continuous signed distance functions for shape representation. In: CVPR (2019)

    Google Scholar 

  24. Paschalidou, D., Ulusoy, A.O., Geiger, A.: Superquadrics revisited: learning 3D shape parsing beyond cuboids. In: CVPR (2019)

    Google Scholar 

  25. Riegler, G., Osman Ulusoy, A., Geiger, A.: Octnet: learning deep 3D representations at high resolutions. In: CVPR (2017)

    Google Scholar 

  26. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347 (2017)

  27. Shi, Z., Meng, Z., Xing, Y., Ma, Y., Wattenhofer, R.: 3d-retr: end-to-end single and multi-view 3D reconstruction with transformers. In: BMVC (2021)

    Google Scholar 

  28. Snavely, N., Seitz, S.M., Szeliski, R.: Photo tourism: exploring photo collections in 3D. In: SIGGRAPH (2006)

    Google Scholar 

  29. Sun, X., et al.: Pix3d: dataset and methods for single-image 3D shape modeling. In: CVPR (2018)

    Google Scholar 

  30. Tatarchenko, M., Dosovitskiy, A., Brox, T.: Octree generating networks: efficient convolutional architectures for high-resolution 3D outputs. In: ICCV (2017)

    Google Scholar 

  31. Thompson, R., Ghalebi, E., DeVries, T., Taylor, G.W.: Building lego using deep generative models of graphs. In: NeurIPS Workshop (2020)

    Google Scholar 

  32. Tulsiani, S., Efros, A.A., Malik, J.: Multi-view consistency as supervisory signal for learning shape and pose prediction. In: CVPR (2018)

    Google Scholar 

  33. Tulsiani, S., Gupta, S., Fouhey, D.F., Efros, A.A., Malik, J.: Factoring shape, pose, and layout from the 2D image of a 3D scene. In: CVPR (2018)

    Google Scholar 

  34. Tulsiani, S., Su, H., Guibas, L.J., Efros, A.A., Malik, J.: Learning shape abstractions by assembling volumetric primitives. In: CVPR (2017)

    Google Scholar 

  35. Vaswani, A., et al.: Attention is all you need. In: NeurIPS (2017)

    Google Scholar 

  36. Walsman, A., Zhang, M., Kotar, K., Desingh, K., Farhadi, A., Fox, D.: Break and make: interactive structural understanding using lego bricks. In: ECCV (2022)

    Google Scholar 

  37. Wang, R., Zhang, Y., Mao, J., Cheng, C.Y., Wu, J.: Translating a visual lego manual to a machine-executable plan. In: ECCV (2022)

    Google Scholar 

  38. Wu, J., Wang, Y., Xue, T., Sun, X., Freeman, B., Tenenbaum, J.: Marrnet: 3d shape reconstruction via 2.5 d sketches. In: NeurIPS (2017)

    Google Scholar 

  39. Wu, J., Zhang, C., Xue, T., Freeman, B., Tenenbaum, J.: Learning a probabilistic latent space of object shapes via 3d generative-adversarial modeling. In: NeurIPS (2016)

    Google Scholar 

  40. Wu, R., Tie, C., Du, Y., Zhao, Y., Dong, H.: Leveraging se (3) equivariance for learning 3d geometric shape assembly. In: ICCV (2023)

    Google Scholar 

  41. Wu, R., Zhuang, Y., Xu, K., Zhang, H., Chen, B.: Pq-net: a generative part seq2seq network for 3D shapes. In: CVPR (2020)

    Google Scholar 

  42. Wu, Z., et al.: 3D shapenets: a deep representation for volumetric shapes. In: CVPR (2015)

    Google Scholar 

  43. Xie, H., Yao, H., Sun, X., Zhou, S., Zhang, S.: Pix2vox: context-aware 3D reconstruction from single and multi-view images. In: ICCV (2019)

    Google Scholar 

  44. Xu, X., Guerrero, P., Fisher, M., Chaudhuri, S., Ritchie, D.: Unsupervised 3d shape reconstruction by part retrieval and assembly. In: CVPR (2023)

    Google Scholar 

  45. Zakka, K., Zeng, A., Lee, J., Song, S.: Form2fit: learning shape priors for generalizable assembly from disassembly. In: ICRA (2020)

    Google Scholar 

  46. Zhan, G., et al.: Generative 3d part assembly via dynamic graph learning. In: NeurIPS (2020)

    Google Scholar 

  47. Zou, C., Yumer, E., Yang, J., Ceylan, D., Hoiem, D.: 3d-prnn: generating shape primitives with recurrent neural networks. In: ICCV (2017)

    Google Scholar 

Download references

Acknowledgement

This research/project is supported by the National Research Foundation Singapore and DSO National Laboratories under the AI Singapore Programme (Award Number: AISG2-RP-2020-016), and the Tier 2 grant MOE-T2EP20120-0011 from the Singapore Ministry of Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mengqi Guo .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1139 KB)

Supplementary material 2 (mp4 282 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Guo, M., Li, C., Zhao, Y., Lee, G.H. (2025). TreeSBA: Tree-Transformer for Self-supervised Sequential Brick Assembly. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15144. Springer, Cham. https://doi.org/10.1007/978-3-031-73016-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-73016-0_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-73015-3

  • Online ISBN: 978-3-031-73016-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics