Abstract
Radar-based perception has gained increasing attention in autonomous driving, yet the inherent sparsity of radars poses challenges. Radar raw data often contains excessive noise, whereas radar point clouds retain only limited information. In this work, we holistically treat the sparse nature of radar data by introducing an adaptive subsampling method together with a tailored network architecture that exploits the sparsity patterns to discover global and local dependencies in the radar signal. Our subsampling module selects a subset of pixels from range-doppler (RD) spectra that contribute most to the downstream perception tasks. To improve the feature extraction on sparse subsampled data, we propose a new way of applying graph neural networks on radar data and design a novel two-branch backbone to capture both global and local neighbor information. An attentive fusion module is applied to combine features from both branches. Experiments on the RADIal dataset show that our SparseRadNet exceeds state-of-the-art (SOTA) performance in object detection and achieves close to SOTA accuracy in freespace segmentation, meanwhile using sparse subsampled input data.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bansal, K., Rungta, K., Zhu, S., Bharadia, D.: Pointillism: accurate 3D bounding box estimation with multi-radars. In: Proceedings of the 18th Conference on Embedded Networked Sensor Systems, pp. 340–353 (2020)
Brooker, G.M., et al.: Understanding millimetre wave fmcw radars. In: 1st international Conference on Sensing Technology, vol. 1 (2005)
Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2017)
Dalbah, Y., Lahoud, J., Cholakkal, H.: Transradar: adaptive-directional transformer for real-time multi-view radar semantic segmentation. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision pp, 353–362 (2024),
Danzer, A., Griebel, T., Bach, M., Dietmayer, K.: 2D car detection in radar data with pointnets. In: 2019 IEEE Intelligent Transportation Systems Conference (ITSC), pp. 61–66. IEEE (2019)
Decourt, C., VanRullen, R., Salle, D., Oberlin, T.: Darod: a deep automotive radar object detector on range-doppler maps. In: 2022 IEEE Intelligent Vehicles Symposium (IV), pp. 112–118. IEEE (2022)
Dong, X., Wang, P., Zhang, P., Liu, L.: Probabilistic oriented object detection in automotive radar. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 102–103 (2020)
Dreher, M., Erçelik, E., Bänziger, T., Knoll, A.: Radar-based 2d car detection using deep neural networks. In: 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC), pp. 1–8. IEEE (2020)
Fent, F., Bauerschmidt, P., Lienkamp, M.: Radargnn: transformation invariant graph neural network for radar-based perception. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 182–191 (2023)
Gao, X., Xing, G., Roy, S., Liu, H.: Ramp-CNN: a novel neural network for enhanced automotive radar object recognition. IEEE Sens. J. 21(4), 5119–5132 (2020)
Giroux, J., Bouchard, M., Laganiere, R.: T-fftradnet: object detection with swin vision transformers from raw ADC radar signals. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4030–4039 (2023)
Graham, B., Van der Maaten, L.: Submanifold sparse convolutional networks. arXiv preprint arXiv:1706.01307 (2017)
Gumbel, E.J.: Statistical theory of extreme values and some practical applications: a series of lectures, vol. 33. US Government Printing Office (1948)
Han, K., Wang, Y., Guo, J., Tang, Y., Wu, E.: Vision GNN: an image is worth graph of nodes. Adv. Neural. Inf. Process. Syst. 35, 8291–8303 (2022)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
He, Q., Wang, Z., Zeng, H., Zeng, Y., Liu, Y.: Svga-net: sparse voxel-graph attention network for 3D object detection from point clouds. In: Proceedings of the AAAI Conference on Artificial Intelligence. vol. 36, pp. 870–878 (2022)
Hendrycks, D., Gimpel, K.: Gaussian error linear units (gelus). arXiv preprint arXiv:1606.08415 (2016)
Ho, J., Kalchbrenner, N., Weissenborn, D., Salimans, T.: Axial attention in multidimensional transformers. arXiv preprint arXiv:1912.12180 (2019)
Huijben, I.A., Veeling, B.S., van Sloun, R.J.: Deep probabilistic subsampling for task-adaptive compressed sensing. In: International Conference on Learning Representations (2019)
Jalil, A., Yousaf, H., Baig, M.I.: Analysis of CFAR techniques. In: 2016 13th International Bhurban Conference on Applied Sciences and Technology (IBCAST), pp. 654–659. IEEE (2016)
Jang, E., Gu, S., Poole, B.: Categorical reparameterization with gumbel-softmax. In: International Conference on Learning Representations (2017)
Jin, Y., Deligiannis, A., Fuentes-Michel, J.C., Vossiek, M.: Cross-modal supervision-based multitask learning with automotive radar raw data. IEEE Transactions on Intelligent Vehicles (2023)
Jose, E., Adams, M.D.: Millimetre wave radar spectra simulation and interpretation for outdoor slam. In: IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA’04. 2004. vol. 2, pp. 1321–1326. IEEE (2004)
Li, P., Wang, P., Berntorp, K., Liu, H.: Exploiting temporal relations on radar perception for autonomous driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 17071–17080 (2022)
Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021)
Madani, S., Guan, J., Ahmed, W., Gupta, S., Hassanieh, H.: Radatron: accurate detection using multi-resolution cascaded mimo radar. In: European Conference on Computer Vision, pp. 160–178. Springer (2022). https://doi.org/10.1007/978-3-031-19842-7_10
Major, B., et al.: Vehicle detection with automotive radar using deep learning on range-azimuth-doppler tensors. In: Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops, pp. 0–0 (2019)
Meyer, M., Kuschk, G., Tomforde, S.: Graph convolutional networks for 3D object detection on radar data. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3060–3069 (2021)
Munir, M., Avery, W., Marculescu, R.: Mobilevig: graph-based sparse attention for mobile vision applications. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2210–2218 (2023)
Ouaknine, A., Newson, A., Pérez, P., Tupin, F., Rebut, J.: Multi-view radar semantic segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 15671–15680 (2021)
Palffy, A., Dong, J., Kooij, J.F., Gavrila, D.M.: CNN based road user detection using the 3d radar cube. IEEE Robot. Autom. Lett. 5(2), 1263–1270 (2020)
Palffy, A., Pool, E., Baratam, S., Kooij, J.F., Gavrila, D.M.: Multi-class road user detection with 3+ 1d radar in the view-of-delft dataset. IEEE Robot. Autom. Lett. 7(2), 4961–4968 (2022)
Qi, C.R., Yi, L., Su, H., Guibas, L.J.: Pointnet++: deep hierarchical feature learning on point sets in a metric space. In: Advances in Neural Information Processing Systems, vol. 30 (2017)
Rebut, J., Ouaknine, A., Malik, W., Pérez, P.: Raw high-definition radar for multi-task learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 17021–17030 (2022)
Ren, S., He, K., Girshick, R., Sun, J.: Faster r-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, vol. 28 (2015)
Robey, F.C., Coutts, S., Weikle, D., McHarg, J.C., Cuomo, K.: Mimo radar theory and experimental results. In: Conference Record of the Thirty-Eighth Asilomar Conference on Signals, Systems and Computers, 2004. vol. 1, pp. 300–304. IEEE (2004)
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Schumann, O., Lombacher, J., Hahn, M., Wöhler, C., Dickmann, J.: Scene understanding with automotive radar. IEEE Trans. Intell. Veh. 5(2), 188–203 (2019)
Sheeny, M., De Pellegrin, E., Mukherjee, S., Ahrabian, A., Wang, S., Wallace, A.: Radiate: a radar dataset for automotive perception in bad weather. In: 2021 IEEE International Conference on Robotics and Automation (ICRA), pp. 1–7. IEEE (2021)
Shi, W., Rajkumar, R.: Point-gnn: graph neural network for 3D object detection in a point cloud. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1711–1719 (2020)
Tan, B., et al.: 3D object detection for multi-frame 4d automotive millimeter-wave radar point cloud. IEEE Sensors Journal (2022)
Thomas, H., Qi, C.R., Deschaud, J.E., Marcotegui, B., Goulette, F., Guibas, L.J.: Kpconv: flexible and deformable convolution for point clouds. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6411–6420 (2019)
Ulrich, M., et al.: Improved orientation estimation and detection with hybrid object detection networks for automotive radar. In: 2022 IEEE 25th International Conference on Intelligent Transportation Systems (ITSC), pp. 111–117. IEEE (2022)
Van Gorp, H., Huijben, I., Veeling, B.S., Pezzotti, N., Van Sloun, R.J.: Active deep probabilistic subsampling. In: International Conference on Machine Learning, pp. 10509–10518. PMLR (2021)
Wang, Y., Jiang, Z., Li, Y., Hwang, J.N., Xing, G., Liu, H.: Rodnet: a real-time radar object detection network cross-supervised by camera-radar fused object 3d localization. IEEE J. Selected Topics Signal Process. 15(4), 954–967 (2021)
Wei, Z., Zhang, F., Chang, S., Liu, Y., Wu, H., Feng, Z.: Mmwave radar and vision fusion for object detection in autonomous driving: a review. Sensors 22(7), 2542 (2022)
Woo, S., Park, J., Lee, J.Y., Kweon, I.S.: Cbam: convolutional block attention module. In: Proceedings of the European Conference on Computer Vision (ECCV) (September 2018)
Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K.: Aggregated residual transformations for deep neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1492–1500 (2017)
Yang, B., Khatri, I., Happold, M., Chen, C.: Adcnet: learning from raw radar data via distillation. arXiv preprint arXiv:2303.11420 (2023)
Zhang, A., Nowruzi, F.E., Laganiere, R.: Raddet: range-azimuth-doppler based radar object detection for dynamic road users. In: 2021 18th Conference on Robots and Vision (CRV), pp. 95–102. IEEE (2021)
Zhang, G., Li, H., Wenger, F.: Object detection and 3D estimation via an FMCW radar using a fully convolutional network. In: ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4487–4491. IEEE (2020)
Zhang, L., et al.: Peakconv: Learning peak receptive field for radar semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 17577–17586 (2023)
Zhou, Y., Liu, L., Zhao, H., López-Benítez, M., Yu, L., Yue, Y.: Towards deep radar perception for autonomous driving: Datasets, methods, and challenges. Sensors 22(11), 4208 (2022)
Acknowledgements
J.W. and M.R. acknowledge support by the German Federal Ministry of Education and Research within the junior research group project “UnrEAL” (grant no. 01IS22069).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Wu, J., Meuter, M., Schoeler, M., Rottmann, M. (2025). SparseRadNet: Sparse Perception Neural Network on Subsampled Radar Data. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15144. Springer, Cham. https://doi.org/10.1007/978-3-031-73016-0_4
Download citation
DOI: https://doi.org/10.1007/978-3-031-73016-0_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-73015-3
Online ISBN: 978-3-031-73016-0
eBook Packages: Computer ScienceComputer Science (R0)