Abstract
Co-speech gesture video generation is an enabling technique for many digital human applications. Substantial progress has been made in creating high-quality talking head videos. However, existing hand gesture video generation methods are primarily limited by the widely adopted 2D skeleton-based gesture representation and still struggle to generate realistic hands. We introduce an audio-driven co-speech video generation pipeline to synthesize human speech videos leveraging 3D human mesh-based representations. By adopting a 3D human mesh-based gesture representation, we present a mesh-grounded video generator that includes a mesh texture map optimization step followed by a conditional GAN network and outputs photorealistic gesture videos with realistic hands. Our experiments on the TalkSHOW dataset demonstrate the effectiveness of our method over 2D skeleton-based baselines.
A. Mahapatra and R. Mishra—Equal contribution.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ao, T., Zhang, Z., Liu, L.: GestureDiffuCLIP: gesture diffusion model with CLIP latents. ACM Trans. Graph. (2023). https://doi.org/10.1145/3592097
Baevski, A., Zhou, Y., Mohamed, A., Auli, M.: wav2vec 2.0: a framework for self-supervised learning of speech representations. In: NeurIPS, vol. 33 (2020)
Boukhayma, A., Bem, R.D., Torr, P.H.: 3D hand shape and pose from images in the wild. In: CVPR (2019)
Ceylan, D., Huang, C.H.P., Mitra, N.J.: Pix2Video: video editing using image diffusion. In: ICCV (2023)
Chan, C., Ginosar, S., Zhou, T., Efros, A.A.: Everybody dance now. In: IEEE International Conference on Computer Vision (ICCV) (2019)
Chen, W., et al.: Control-a-video: controllable text-to-video generation with diffusion models. arXiv:2305.13840 (2023)
Cudeiro, D., Bolkart, T., Laidlaw, C., Ranjan, A., Black, M.J.: Capture, learning, and synthesis of 3D speaking styles. In: CVPR (2019)
Fan, Y., Lin, Z., Saito, J., Wang, W., Komura, T.: FaceFormer: speech-driven 3D facial animation with transformers. In: CVPR (2022)
Geyer, M., Bar-Tal, O., Bagon, S., Dekel, T.: TokenFlow: consistent diffusion features for consistent video editing. arXiv preprint arxiv:2307.10373 (2023)
Ginosar, S., Bar, A., Kohavi, G., Chan, C., Owens, A., Malik, J.: Learning individual styles of conversational gesture. In: Computer Vision and Pattern Recognition (CVPR). IEEE (2019)
Guan, J., et al.: StyleSync: high-fidelity generalized and personalized lip sync in style-based generator. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2023)
Guo, Y., Chen, K., Liang, S., Liu, Y., Bao, H., Zhang, J.: AD-NeRF: audio driven neural radiance fields for talking head synthesis. In: IEEE/CVF International Conference on Computer Vision (ICCV) (2021)
Habibie, I., et al.: Learning speech-driven 3D conversational gestures from video. In: Proceedings of the 21st ACM International Conference on Intelligent Virtual Agents, pp. 101–108 (2021)
Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs trained by a two time-scale update rule converge to a local nash equilibrium. In: NeurIPS, vol. 30 (2017)
Huang, Z., et al.: Make-your-anchor: a diffusion-based 2D avatar generation framework. In: CVPR (2024)
Huh, M., Zhang, R., Zhu, J.Y., Paris, S., Hertzmann, A.: Transforming and projecting images to class-conditional generative networks. In: ECCV (2020)
Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: CVPR (2017)
Karras, T., Aila, T., Laine, S., Herva, A., Lehtinen, J.: Audio-driven facial animation by joint end-to-end learning of pose and emotion. ACM Trans. Graph. (TOG) 36(4), 1–12 (2017)
Li, T., Bolkart, T., Black, M.J., Li, H., Romero, J.: Learning a model of facial shape and expression from 4D scans. ACM Trans. Graph. 36(6), 194 (2017)
Lin, S., Yang, L., Saleemi, I., Sengupta, S.: Robust high-resolution video matting with temporal guidance. In: WACV (2022)
Liu, X., et al.: Audio-driven co-speech gesture video generation. In: NeurIPS (2022)
Loper, M., Mahmood, N., Romero, J., Pons-Moll, G., Black, M.J.: SMPL: a skinned multi-person linear model. In: Seminal Graphics Papers: Pushing the Boundaries, vol. 2, pp. 851–866 (2023)
Lu, Y., Chai, J., Cao, X.: Live speech portraits: real-time photorealistic talking-head animation. ACM Trans. Graph. 40(6), 1–7 (2021). https://doi.org/10.1145/3478513.3480484
Ma, Y., et al.: StyleTalk: one-shot talking head generation with controllable speaking styles. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 37, pp. 1896–1904 (2023)
Mallya, A., Wang, T.-C., Sapra, K., Liu, M.-Y.: World-consistent video-to-video synthesis. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12353, pp. 359–378. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58598-3_22
Mensah, D., Kim, N.H., Aittala, M., Laine, S., Lehtinen, J.: A hybrid generator architecture for controllable face synthesis. In: ACM SIGGRAPH 2023 Conference Proceedings, pp. 1–10 (2023)
Van den Oord, A., Kalchbrenner, N., Espeholt, L., Vinyals, O., Graves, A.: Conditional image generation with PixelCNN decoders. In: NeurIPS, vol. 29 (2016)
Ouyang, L., et al.: Training language models to follow instructions with human feedback. In: NeurIPS, vol. 35 (2022)
Park, T., Liu, M.Y., Wang, T.C., Zhu, J.Y.: Semantic image synthesis with spatially-adaptive normalization. In: CVPR (2019)
Pavlakos, G., et al.: Expressive body capture: 3D hands, face, and body from a single image. In: CVPR (2019)
Prajwal, K.R., Mukhopadhyay, R., Namboodiri, V.P., Jawahar, C.: A lip sync expert is all you need for speech to lip generation in the wild. In: ACM MM (2020)
Z Qi, C., et al.: FateZero: fusing attentions for zero-shot text-based video editing. arXiv:2303.09535 (2023)
Qian, S., Tu, Z., Zhi, Y., Liu, W., Gao, S.: Speech drives templates: co-speech gesture synthesis with learned templates. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV). IEEE (2021)
Ravi, N., et al.: Accelerating 3D deep learning with PyTorch3D. arXiv:2007.08501 (2020)
Richard, A., Zollhöfer, M., Wen, Y., De la Torre, F., Sheikh, Y.: MeshTalk: 3D face animation from speech using cross-modality disentanglement. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2021)
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Shen, S., et al.: DiffTalk: crafting diffusion models for generalized audio-driven portraits animation. In: CVPR (2023)
Siarohin, A., Lathuilière, S., Tulyakov, S., Ricci, E., Sebe, N.: First order motion model for image animation. In: NeurIPS (2019)
Skorokhodov, I., Tulyakov, S., Elhoseiny, M.: StyleGAN-V: a continuous video generator with the price, image quality and perks of styleGAN2. In: CVPR (2022)
Tulyakov, S., Liu, M.Y., Yang, X., Kautz, J.: MoCoGAN: decomposing motion and content for video generation. In: CVPR (2018)
Van Den Oord, A., Vinyals, O.: Neural discrete representation learning. In: NeurIPS, vol. 30 (2017)
Vondrick, C., Pirsiavash, H., Torralba, A.: Generating videos with scene dynamics. In: NeurIPS (2016)
Wang, J., Qian, X., Zhang, M., Tan, R.T., Li, H.: Seeing what you said: talking face generation guided by a lip reading expert. In: CVPR (2023)
Wang, T.C., et al.: Video-to-video synthesis. In: NeurIPS (2018)
Wang, T.C., Liu, M.Y., Zhu, J.Y., Tao, A., Kautz, J., Catanzaro, B.: High-resolution image synthesis and semantic manipulation with conditional GANs. In: CVPR (2018)
Wang, T.C., Mallya, A., Liu, M.Y.: One-shot free-view neural talking-head synthesis for video conferencing. In: CVPR (2021)
Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)
Wu, H., Jia, J., Wang, H., Dou, Y., Duan, C., Deng, Q.: Imitating arbitrary talking style for realistic audio-driven talking face synthesis. In: ACM MM (2021)
Wu, J.Z., et al.: Tune-a-video: one-shot tuning of image diffusion models for text-to-video generation. arXiv preprint arXiv:2212.11565 (2022)
Yan, W., Zhang, Y., Abbeel, P., Srinivas, A.: VideoGPT: Video generation using VQ-VAE and transformers. arXiv preprint arXiv:2104.10157 (2021)
Yang, S., Zhou, Y., Liu, Z., , Loy, C.C.: Rerender a video: zero-shot text-guided video-to-video translation. In: ACM SIGGRAPH Asia Conference Proceedings (2023)
Yang, S., et al.: DiffuseStyleGesture: stylized audio-driven co-speech gesture generation with diffusion models. In: IJCAI (2023)
Yao, X., Fried, O., Fatahalian, K., Agrawala, M.: Iterative text-based editing of talking-heads using neural retargeting. ACM Trans. Graph. (TOG) 40(3), 1–14 (2021)
Yi, H., et al.: Generating holistic 3D human motion from speech. In: CVPR (2023)
Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: CVPR (2018)
Zhang, W., et al.: SadTalker: learning realistic 3D motion coefficients for stylized audio-driven single image talking face animation. arXiv preprint arXiv:2211.12194 (2022)
Zhao, J., Zhang, H.: Thin-plate spline motion model for image animation. In: CVPR (2022)
Zhu, L., Liu, X., Liu, X., Qian, R., Liu, Z., Yu, L.: Taming diffusion models for audio-driven co-speech gesture generation. In: CVPR (2023)
Zielonka, W., Bolkart, T., Thies, J.: Instant volumetric head avatars. In: CVPR (2023)
Acknowledgments
We thank Kangle Deng, Yufei Ye, and Shubham Tulsiani for their helpful discussion. The project is partly supported by Ping An Research.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Mahapatra, A. et al. (2025). Co-speech Gesture Video Generation with 3D Human Meshes. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15147. Springer, Cham. https://doi.org/10.1007/978-3-031-73024-5_11
Download citation
DOI: https://doi.org/10.1007/978-3-031-73024-5_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-73023-8
Online ISBN: 978-3-031-73024-5
eBook Packages: Computer ScienceComputer Science (R0)