Skip to main content

Co-speech Gesture Video Generation with 3D Human Meshes

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15147))

Included in the following conference series:

  • 238 Accesses

Abstract

Co-speech gesture video generation is an enabling technique for many digital human applications. Substantial progress has been made in creating high-quality talking head videos. However, existing hand gesture video generation methods are primarily limited by the widely adopted 2D skeleton-based gesture representation and still struggle to generate realistic hands. We introduce an audio-driven co-speech video generation pipeline to synthesize human speech videos leveraging 3D human mesh-based representations. By adopting a 3D human mesh-based gesture representation, we present a mesh-grounded video generator that includes a mesh texture map optimization step followed by a conditional GAN network and outputs photorealistic gesture videos with realistic hands. Our experiments on the TalkSHOW dataset demonstrate the effectiveness of our method over 2D skeleton-based baselines.

A. Mahapatra and R. Mishra—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ao, T., Zhang, Z., Liu, L.: GestureDiffuCLIP: gesture diffusion model with CLIP latents. ACM Trans. Graph. (2023). https://doi.org/10.1145/3592097

    Article  Google Scholar 

  2. Baevski, A., Zhou, Y., Mohamed, A., Auli, M.: wav2vec 2.0: a framework for self-supervised learning of speech representations. In: NeurIPS, vol. 33 (2020)

    Google Scholar 

  3. Boukhayma, A., Bem, R.D., Torr, P.H.: 3D hand shape and pose from images in the wild. In: CVPR (2019)

    Google Scholar 

  4. Ceylan, D., Huang, C.H.P., Mitra, N.J.: Pix2Video: video editing using image diffusion. In: ICCV (2023)

    Google Scholar 

  5. Chan, C., Ginosar, S., Zhou, T., Efros, A.A.: Everybody dance now. In: IEEE International Conference on Computer Vision (ICCV) (2019)

    Google Scholar 

  6. Chen, W., et al.: Control-a-video: controllable text-to-video generation with diffusion models. arXiv:2305.13840 (2023)

  7. Cudeiro, D., Bolkart, T., Laidlaw, C., Ranjan, A., Black, M.J.: Capture, learning, and synthesis of 3D speaking styles. In: CVPR (2019)

    Google Scholar 

  8. Fan, Y., Lin, Z., Saito, J., Wang, W., Komura, T.: FaceFormer: speech-driven 3D facial animation with transformers. In: CVPR (2022)

    Google Scholar 

  9. Geyer, M., Bar-Tal, O., Bagon, S., Dekel, T.: TokenFlow: consistent diffusion features for consistent video editing. arXiv preprint arxiv:2307.10373 (2023)

  10. Ginosar, S., Bar, A., Kohavi, G., Chan, C., Owens, A., Malik, J.: Learning individual styles of conversational gesture. In: Computer Vision and Pattern Recognition (CVPR). IEEE (2019)

    Google Scholar 

  11. Guan, J., et al.: StyleSync: high-fidelity generalized and personalized lip sync in style-based generator. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2023)

    Google Scholar 

  12. Guo, Y., Chen, K., Liang, S., Liu, Y., Bao, H., Zhang, J.: AD-NeRF: audio driven neural radiance fields for talking head synthesis. In: IEEE/CVF International Conference on Computer Vision (ICCV) (2021)

    Google Scholar 

  13. Habibie, I., et al.: Learning speech-driven 3D conversational gestures from video. In: Proceedings of the 21st ACM International Conference on Intelligent Virtual Agents, pp. 101–108 (2021)

    Google Scholar 

  14. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs trained by a two time-scale update rule converge to a local nash equilibrium. In: NeurIPS, vol. 30 (2017)

    Google Scholar 

  15. Huang, Z., et al.: Make-your-anchor: a diffusion-based 2D avatar generation framework. In: CVPR (2024)

    Google Scholar 

  16. Huh, M., Zhang, R., Zhu, J.Y., Paris, S., Hertzmann, A.: Transforming and projecting images to class-conditional generative networks. In: ECCV (2020)

    Google Scholar 

  17. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: CVPR (2017)

    Google Scholar 

  18. Karras, T., Aila, T., Laine, S., Herva, A., Lehtinen, J.: Audio-driven facial animation by joint end-to-end learning of pose and emotion. ACM Trans. Graph. (TOG) 36(4), 1–12 (2017)

    Article  Google Scholar 

  19. Li, T., Bolkart, T., Black, M.J., Li, H., Romero, J.: Learning a model of facial shape and expression from 4D scans. ACM Trans. Graph. 36(6), 194 (2017)

    Article  Google Scholar 

  20. Lin, S., Yang, L., Saleemi, I., Sengupta, S.: Robust high-resolution video matting with temporal guidance. In: WACV (2022)

    Google Scholar 

  21. Liu, X., et al.: Audio-driven co-speech gesture video generation. In: NeurIPS (2022)

    Google Scholar 

  22. Loper, M., Mahmood, N., Romero, J., Pons-Moll, G., Black, M.J.: SMPL: a skinned multi-person linear model. In: Seminal Graphics Papers: Pushing the Boundaries, vol. 2, pp. 851–866 (2023)

    Google Scholar 

  23. Lu, Y., Chai, J., Cao, X.: Live speech portraits: real-time photorealistic talking-head animation. ACM Trans. Graph. 40(6), 1–7 (2021). https://doi.org/10.1145/3478513.3480484

    Article  Google Scholar 

  24. Ma, Y., et al.: StyleTalk: one-shot talking head generation with controllable speaking styles. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 37, pp. 1896–1904 (2023)

    Google Scholar 

  25. Mallya, A., Wang, T.-C., Sapra, K., Liu, M.-Y.: World-consistent video-to-video synthesis. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12353, pp. 359–378. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58598-3_22

    Chapter  Google Scholar 

  26. Mensah, D., Kim, N.H., Aittala, M., Laine, S., Lehtinen, J.: A hybrid generator architecture for controllable face synthesis. In: ACM SIGGRAPH 2023 Conference Proceedings, pp. 1–10 (2023)

    Google Scholar 

  27. Van den Oord, A., Kalchbrenner, N., Espeholt, L., Vinyals, O., Graves, A.: Conditional image generation with PixelCNN decoders. In: NeurIPS, vol. 29 (2016)

    Google Scholar 

  28. Ouyang, L., et al.: Training language models to follow instructions with human feedback. In: NeurIPS, vol. 35 (2022)

    Google Scholar 

  29. Park, T., Liu, M.Y., Wang, T.C., Zhu, J.Y.: Semantic image synthesis with spatially-adaptive normalization. In: CVPR (2019)

    Google Scholar 

  30. Pavlakos, G., et al.: Expressive body capture: 3D hands, face, and body from a single image. In: CVPR (2019)

    Google Scholar 

  31. Prajwal, K.R., Mukhopadhyay, R., Namboodiri, V.P., Jawahar, C.: A lip sync expert is all you need for speech to lip generation in the wild. In: ACM MM (2020)

    Google Scholar 

  32. Z Qi, C., et al.: FateZero: fusing attentions for zero-shot text-based video editing. arXiv:2303.09535 (2023)

  33. Qian, S., Tu, Z., Zhi, Y., Liu, W., Gao, S.: Speech drives templates: co-speech gesture synthesis with learned templates. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV). IEEE (2021)

    Google Scholar 

  34. Ravi, N., et al.: Accelerating 3D deep learning with PyTorch3D. arXiv:2007.08501 (2020)

  35. Richard, A., Zollhöfer, M., Wen, Y., De la Torre, F., Sheikh, Y.: MeshTalk: 3D face animation from speech using cross-modality disentanglement. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2021)

    Google Scholar 

  36. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  37. Shen, S., et al.: DiffTalk: crafting diffusion models for generalized audio-driven portraits animation. In: CVPR (2023)

    Google Scholar 

  38. Siarohin, A., Lathuilière, S., Tulyakov, S., Ricci, E., Sebe, N.: First order motion model for image animation. In: NeurIPS (2019)

    Google Scholar 

  39. Skorokhodov, I., Tulyakov, S., Elhoseiny, M.: StyleGAN-V: a continuous video generator with the price, image quality and perks of styleGAN2. In: CVPR (2022)

    Google Scholar 

  40. Tulyakov, S., Liu, M.Y., Yang, X., Kautz, J.: MoCoGAN: decomposing motion and content for video generation. In: CVPR (2018)

    Google Scholar 

  41. Van Den Oord, A., Vinyals, O.: Neural discrete representation learning. In: NeurIPS, vol. 30 (2017)

    Google Scholar 

  42. Vondrick, C., Pirsiavash, H., Torralba, A.: Generating videos with scene dynamics. In: NeurIPS (2016)

    Google Scholar 

  43. Wang, J., Qian, X., Zhang, M., Tan, R.T., Li, H.: Seeing what you said: talking face generation guided by a lip reading expert. In: CVPR (2023)

    Google Scholar 

  44. Wang, T.C., et al.: Video-to-video synthesis. In: NeurIPS (2018)

    Google Scholar 

  45. Wang, T.C., Liu, M.Y., Zhu, J.Y., Tao, A., Kautz, J., Catanzaro, B.: High-resolution image synthesis and semantic manipulation with conditional GANs. In: CVPR (2018)

    Google Scholar 

  46. Wang, T.C., Mallya, A., Liu, M.Y.: One-shot free-view neural talking-head synthesis for video conferencing. In: CVPR (2021)

    Google Scholar 

  47. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  48. Wu, H., Jia, J., Wang, H., Dou, Y., Duan, C., Deng, Q.: Imitating arbitrary talking style for realistic audio-driven talking face synthesis. In: ACM MM (2021)

    Google Scholar 

  49. Wu, J.Z., et al.: Tune-a-video: one-shot tuning of image diffusion models for text-to-video generation. arXiv preprint arXiv:2212.11565 (2022)

  50. Yan, W., Zhang, Y., Abbeel, P., Srinivas, A.: VideoGPT: Video generation using VQ-VAE and transformers. arXiv preprint arXiv:2104.10157 (2021)

  51. Yang, S., Zhou, Y., Liu, Z., , Loy, C.C.: Rerender a video: zero-shot text-guided video-to-video translation. In: ACM SIGGRAPH Asia Conference Proceedings (2023)

    Google Scholar 

  52. Yang, S., et al.: DiffuseStyleGesture: stylized audio-driven co-speech gesture generation with diffusion models. In: IJCAI (2023)

    Google Scholar 

  53. Yao, X., Fried, O., Fatahalian, K., Agrawala, M.: Iterative text-based editing of talking-heads using neural retargeting. ACM Trans. Graph. (TOG) 40(3), 1–14 (2021)

    Article  Google Scholar 

  54. Yi, H., et al.: Generating holistic 3D human motion from speech. In: CVPR (2023)

    Google Scholar 

  55. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: CVPR (2018)

    Google Scholar 

  56. Zhang, W., et al.: SadTalker: learning realistic 3D motion coefficients for stylized audio-driven single image talking face animation. arXiv preprint arXiv:2211.12194 (2022)

  57. Zhao, J., Zhang, H.: Thin-plate spline motion model for image animation. In: CVPR (2022)

    Google Scholar 

  58. Zhu, L., Liu, X., Liu, X., Qian, R., Liu, Z., Yu, L.: Taming diffusion models for audio-driven co-speech gesture generation. In: CVPR (2023)

    Google Scholar 

  59. Zielonka, W., Bolkart, T., Thies, J.: Instant volumetric head avatars. In: CVPR (2023)

    Google Scholar 

Download references

Acknowledgments

We thank Kangle Deng, Yufei Ye, and Shubham Tulsiani for their helpful discussion. The project is partly supported by Ping An Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richa Mishra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mahapatra, A. et al. (2025). Co-speech Gesture Video Generation with 3D Human Meshes. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15147. Springer, Cham. https://doi.org/10.1007/978-3-031-73024-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-73024-5_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-73023-8

  • Online ISBN: 978-3-031-73024-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics