Abstract
Multi-view surface reconstruction is an ill-posed, inverse problem in 3D vision research. It involves modeling the geometry and appearance with appropriate surface representations. Most of the existing methods rely either on explicit meshes, using surface rendering of meshes for reconstruction, or on implicit field functions, using volume rendering of the fields for reconstruction. The two types of representations in fact have their respective merits. In this work, we propose a new hybrid representation, termed Sur\(^2\)f, aiming to better benefit from both representations in a complementary manner. Technically, we learn two parallel streams of an implicit signed distance field and an explicit surrogate surface (Sur\(^2\)f) mesh, and unify volume rendering of the implicit signed distance function (SDF) and surface rendering of the surrogate mesh with a shared, neural shader; the unified shading promotes their convergence to the same, underlying surface. We synchronize learning of the surrogate mesh by driving its deformation with functions induced from the implicit SDF. In addition, the synchronized surrogate mesh enables surface-guided volume sampling, which greatly improves the sampling efficiency per ray in volume rendering. We conduct thorough experiments showing that Sur\(^2\)f outperforms existing reconstruction methods and surface representations, including hybrid ones, in terms of both recovery quality and recovery efficiency.
Z. Huang and Z. Liang—Indicates equal contribution.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
For any point \(\boldsymbol{x} \in \mathbb {R}^3\) in a 3D space, \(| f(\boldsymbol{x}) |\) assigns its distance to the surface \(\mathcal {S}=\{\boldsymbol{x} \in \mathbb {R}^3 | f(\boldsymbol{x})=0\}\); by convention, we have \(f(\boldsymbol{x}) < 0\) for points inside the surface and \(f(\boldsymbol{x}) > 0\) for those outside.
References
Barron, J.T., Mildenhall, B., Verbin, D., Srinivasan, P.P., Hedman, P.: Mip-nerf 360: Unbounded anti-aliased neural radiance fields. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5470–5479 (2022)
Botsch, M., Kobbelt, L., Pauly, M., Alliez, P., Lévy, B.: Polygon mesh processing. CRC press (2010)
Cai, B., Huang, J., Jia, R., Lv, C., Fu, H.: Neuda: Neural deformable anchor for high-fidelity implicit surface reconstruction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8476–8485 (2023)
Chen, A., Xu, Z., Geiger, A., Yu, J., Su, H.: Tensorf: Tensorial radiance fields. In: European Conference on Computer Vision (ECCV) (2022)
Chen, H., Li, C., Lee, G.H.: Neusg: Neural implicit surface reconstruction with 3d gaussian splatting guidance. arXiv preprint arXiv:2312.00846 (2023)
Chen, W., et al.: Learning to predict 3d objects with an interpolation-based differentiable renderer. In: Advances in Neural Information Processing Systems, vol. 32 (2019)
Community, B.O.: Blender - a 3D modelling and rendering package. Blender Foundation, Stichting Blender Foundation, Amsterdam (2018). http://www.blender.org
Dai, A., Chang, A.X., Savva, M., Halber, M., Funkhouser, T., Nießner, M.: Scannet: richly-annotated 3d reconstructions of indoor scenes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5828–5839 (2017)
Darmon, F., Bascle, B., Devaux, J., Monasse, P., Aubry, M.: Improving neural implicit surfaces geometry with patch warping. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022)
Fan, Y., et al.: Factored-neus: Reconstructing surfaces, illumination, and materials of possibly glossy objects. arXiv preprint arXiv:2305.17929 (2023)
Fu, Q., Xu, Q., Ong, Y.S., Tao, W.: Geo-neus: geometry-consistent neural implicit surfaces learning for multi-view reconstruction. Adv. Neural. Inf. Process. Syst. 35, 3403–3416 (2022)
Goel, S., Gkioxari, G., Malik, J.: Differentiable stereopsis: meshes from multiple views using differentiable rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8635–8644 (2022)
Gropp, A., Yariv, L., Haim, N., Atzmon, M., Lipman, Y.: Implicit geometric regularization for learning shapes. In: Proceedings of the 37th International Conference on Machine Learning, pp. 3789–3799 (2020)
Guédon, A., Lepetit, V.: Sugar: Surface-aligned gaussian splatting for efficient 3d mesh reconstruction and high-quality mesh rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5354–5363 (2024)
Guo, Y.C., Cao, Y.P., Wang, C., He, Y., Shan, Y., Zhang, S.H.: Vmesh: Hybrid volume-mesh representation for efficient view synthesis. In: SIGGRAPH Asia 2023 Conference Papers, pp. 1–11 (2023)
Hart, J.C.: Sphere tracing: a geometric method for the antialiased ray tracing of implicit surfaces. Vis. Comput. 12(10), 527–545 (1996)
Jensen, R., Dahl, A., Vogiatzis, G., Tola, E., Aanæs, H.: Large scale multi-view stereopsis evaluation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 406–413 (2014)
D Kajiya, J.T.: The rendering equation. In: Proceedings of the 13th Annual Conference on Computer Graphics and Interactive Techniques, pp. 143–150 (1986)
Kerbl, B., Kopanas, G., Leimkühler, T., Drettakis, G.: 3d gaussian splatting for real-time radiance field rendering. ACM Trans. Graph. 42(4), 1–139 (2023)
Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
Knapitsch, A., Park, J., Zhou, Q.Y., Koltun, V.: Tanks and temples: benchmarking large-scale scene reconstruction. ACM Trans. Graph. (ToG) 36(4), 1–13 (2017)
Laine, S., Hellsten, J., Karras, T., Seol, Y., Lehtinen, J., Aila, T.: Modular primitives for high-performance differentiable rendering. ACM Trans. Graph. 39(6) (2020)
Li, H., Yang, X., Zhai, H., Liu, Y., Bao, H., Zhang, G.: Vox-surf: Voxel-based implicit surface representation. IEEE Transactions on Visualization and Computer Graphics (2022)
Li, R., Tancik, M., Kanazawa, A.: Nerfacc: A general nerf acceleration toolbox. arXiv preprint arXiv:2210.04847 (2022)
Li, Z., et al.: Neuralangelo: high-fidelity neural surface reconstruction. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2023)
Liang, Z., Huang, Z., Ding, C., Jia, K.: Helixsurf: A robust and efficient neural implicit surface learning of indoor scenes with iterative intertwined regularization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13165–13174 (2023)
Liang, Z., Zhang, Q., Feng, Y., Shan, Y., Jia, K.: Gs-ir: 3D gaussian splatting for inverse rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 21644–21653 (2024)
Liang, Z., Zhang, Q., Hu, W., Feng, Y., Zhu, L., Jia, K.: Analytic-splatting: Anti-aliased 3d gaussian splatting via analytic integration. arXiv preprint arXiv:2403.11056 (2024)
Liu, S., Zhang, Y., Peng, S., Shi, B., Pollefeys, M., Cui, Z.: Dist: rendering deep implicit signed distance function with differentiable sphere tracing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2019–2028 (2020)
Liu, S., Li, T., Chen, W., Li, H.: Soft rasterizer: a differentiable renderer for image-based 3d reasoning. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 7708–7717 (2019)
Lorensen, W.E., Cline, H.E.: Marching cubes: a high resolution 3d surface construction algorithm. ACM Siggraph Comput. Graph. 21(4), 163–169 (1987)
Max, N.: Optical models for direct volume rendering. IEEE Trans. Visual Comput. Graph. 1(2), 99–108 (1995)
Mescheder, L., Oechsle, M., Niemeyer, M., Nowozin, S., Geiger, A.: Occupancy networks: Learning 3d reconstruction in function space. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4460–4470 (2019)
Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: Nerf: representing scenes as neural radiance fields for view synthesis. In: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part I, pp. 405–421 (2020)
Müller, T., Evans, A., Schied, C., Keller, A.: Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans. Graph. (ToG) 41(4), 1–15 (2022)
Munkberg, J., et al.: Extracting triangular 3d models, materials, and lighting from images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8280–8290 (2022)
Niemeyer, M., Mescheder, L., Oechsle, M., Geiger, A.: Differentiable volumetric rendering: Learning implicit 3d representations without 3d supervision. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3504–3515 (2020)
Oechsle, M., Peng, S., Geiger, A.: Unisurf: unifying neural implicit surfaces and radiance fields for multi-view reconstruction. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5589–5599 (2021)
Park, J.J., Florence, P., Straub, J., Newcombe, R., Lovegrove, S.: Deepsdf: learning continuous signed distance functions for shape representation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 165–174 (2019)
Parker, S.G., et al.: Optix: a general purpose ray tracing engine. ACM Trans. Graph. (tog) 29(4), 1–13 (2010)
Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems, vol. 32 (2019)
Sara Fridovich-Keil and Alex Yu, Tancik, M., Chen, Q., Recht, B., Kanazawa, A.: Plenoxels: Radiance fields without neural networks. In: CVPR (2022)
Shen, T., Gao, J., Yin, K., Liu, M.Y., Fidler, S.: Deep marching tetrahedra: a hybrid representation for high-resolution 3d shape synthesis. Adv. Neural. Inf. Process. Syst. 34, 6087–6101 (2021)
Shen, T., et al.: Flexible isosurface extraction for gradient-based mesh optimization. ACM Trans. Graph. (TOG) 42(4), 1–16 (2023)
Shreiner, D., et al.: OpenGL programming guide: the official guide to learning OpenGL, versions 3.0 and 3.1. Pearson Education (2009)
Sun, C., Sun, M., Chen, H.: Direct voxel grid optimization: Super-fast convergence for radiance fields reconstruction. In: CVPR (2022)
Walker, T., Mariotti, O., Vaxman, A., Bilen, H.: Explicit neural surfaces: Learning continuous geometry with deformation fields. arXiv preprint arXiv:2306.02956 (2023)
Wang, P., Liu, L., Liu, Y., Theobalt, C., Komura, T., Wang, W.: Neus: learning neural implicit surfaces by volume rendering for multi-view reconstruction. Adv. Neural. Inf. Process. Syst. 34, 27171–27183 (2021)
Wang, Y., Han, Q., Habermann, M., Daniilidis, K., Theobalt, C., Liu, L.: Neus2: Fast learning of neural implicit surfaces for multi-view reconstruction. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3295–3306 (2023)
Wang, Y., Skorokhodov, I., Wonka, P.: Hf-neus: improved surface reconstruction using high-frequency details. In: Advances in Neural Information Processing Systems (2022)
Wang, Y., Skorokhodov, I., Wonka, P.: Pet-neus: positional encoding tri-planes for neural surfaces. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12598–12607 (2023)
Wang, Z., et al.: Adaptive shells for efficient neural radiance field rendering. arXiv preprint arXiv:2311.10091 (2023)
Worchel, M., Diaz, R., Hu, W., Schreer, O., Feldmann, I., Eisert, P.: Multi-view mesh reconstruction with neural deferred shading. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6187–6197 (2022)
Wu, T., et al.: Voxurf: Voxel-based efficient and accurate neural surface reconstruction. In: International Conference on Learning Representations (ICLR) (2023)
Yariv, L., Gu, J., Kasten, Y., Lipman, Y.: Volume rendering of neural implicit surfaces. Adv. Neural. Inf. Process. Syst. 34, 4805–4815 (2021)
Yariv, L., et al.: Multiview neural surface reconstruction by disentangling geometry and appearance. Adv. Neural. Inf. Process. Syst. 33, 2492–2502 (2020)
Yu, A., Li, R., Tancik, M., Li, H., Ng, R., Kanazawa, A.: Plenoctrees for real-time rendering of neural radiance fields. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5752–5761 (2021)
Yu, Z., Chen, A., Huang, B., Sattler, T., Geiger, A.: Mip-splatting: alias-free 3d gaussian splatting. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 19447–19456 (2024)
Zhang, Y., Zhu, J., Lin, L.: Fastmesh: Fast surface reconstruction by hexagonal mesh-based neural rendering. arXiv preprint arXiv:2305.17858 (2023)
Acknowledgments
This work is supported by the Guangdong Provincial Key Laboratory of Human Digital Twin (2022B1212010004).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Huang, Z., Liang, Z., Jia, K. (2025). Sur\(^{2}\)f: A Hybrid Representation for High-Quality and Efficient Surface Reconstruction from Multi-view Images. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15118. Springer, Cham. https://doi.org/10.1007/978-3-031-73027-6_1
Download citation
DOI: https://doi.org/10.1007/978-3-031-73027-6_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-73026-9
Online ISBN: 978-3-031-73027-6
eBook Packages: Computer ScienceComputer Science (R0)