Abstract
Accurate 3D object detection is vital for automated driving. While lidar sensors are well suited for this task, they are expensive and have limitations in adverse weather conditions. 3+1D imaging radar sensors offer a cost-effective, robust alternative but face challenges due to their low resolution and high measurement noise. Existing 3+1D imaging radar datasets include radar and lidar data, enabling cross-modal model improvements. Although lidar should not be used during inference, it can aid the training of radar-only object detectors. We explore two strategies to transfer knowledge from the lidar to the radar domain and radar-only object detectors: 1. multi-stage training with sequential lidar point cloud thin-out, and 2. cross-modal knowledge distillation. In the multi-stage process, three thin-out methods are examined. Our results show significant performance gains of up to 4.2% points in mean Average Precision with multi-stage training and up to 3.9% points with knowledge distillation by initializing the student with the teacher’s weights. The main benefit of these approaches is their applicability to other 3D object detection networks without altering their architecture, as we show by analyzing it on two different object detectors. Our code is available at https://github.com/rst-tu-dortmund/lerojd.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Afouras, T., Chung, J.S., Zisserman, A.: ASR is all you need: cross-modal distillation for lip reading. In: ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2143–2147. IEEE (2020)
Bengio, Y., Louradour, J., Collobert, R., Weston, J.: Curriculum learning. In: Proceedings of the 26th Annual International Conference on Machine Learning, pp. 41–48 (2009)
Brisken, S., Ruf, F., Höhne, F.: Recent evolution of automotive imaging radar and its information content. IET Radar Sonar Navig. 12(10), 1078–1081 (2018)
Caesar, H., et al.: nuScenes: a multimodal dataset for autonomous driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11621–11631 (2020)
Chen, X., Zhang, T., Wang, Y., Wang, Y., Zhao, H.: FUTR3D: a unified sensor fusion framework for 3D detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 172–181 (2023)
Chen, Y., Liu, J., Zhang, X., Qi, X., Jia, J.: Voxelnext: fully sparse voxelnet for 3D object detection and tracking. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 21674–21683 (2023)
Cheng, H., Han, X., Jiang, H., He, D., Xiao, G.: PCB-randnet: rethinking random sampling for lidar semantic segmentation in autonomous driving scene. arXiv preprint arXiv:2209.13797 (2022)
Choi, M., et al.: MSC-RAD4R: ROS-based automotive dataset with 4D radar. IEEE Robot. Autom. Lett. 8(11), 7194–7201 (2023)
Danzer, A., Griebel, T., Bach, M., Dietmayer, K.: 2D car detection in radar data with pointnets. In: 2019 IEEE Intelligent Transportation Systems Conference (ITSC), pp. 61–66 (2019)
Deng, J., Shi, S., Li, P., Zhou, W., Zhang, Y., Li, H.: Voxel R-CNN: towards high performance voxel-based 3D object detection. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 1201–1209 (2021)
Deng, J., Chan, G., Zhong, H., Lu, C.X.: See beyond seeing: robust 3D object detection from point clouds via cross-modal feature augmentation. arXiv preprint arXiv:2309.17336 (2023)
Ding, F., Palffy, A., Gavrila, D.M., Lu, C.X.: Hidden gems: 4D radar scene flow learning using cross-modal supervision. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9340–9349 (2023)
Drews, F., Feng, D., Faion, F., Rosenbaum, L., Ulrich, M., Gläser, C.: Deepfusion: a robust and modular 3D object detector for lidars, cameras and radars. In: 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 560–567. IEEE (2022)
Engels, F., Heidenreich, P., Wintermantel, M., Stäcker, L., Al Kadi, M., Zoubir, A.M.: Automotive radar signal processing: research directions and practical challenges. IEEE J. Sel. Top. Signal Process. 15(4), 865–878 (2021)
Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? The kitti vision benchmark suite. In: Conference on Computer Vision and Pattern Recognition (CVPR) (2012)
Gupta, S., Hoffman, J., Malik, J.: Cross modal distillation for supervision transfer. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2827–2836 (2016)
Wang, H., et al.: DSVT: dynamic sparse voxel transformer with rotated sets. In: CVPR (2023)
Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. In: Deep Learning Workshop at NIPS (2014)
Hu, Q., et al.: Randla-net: efficient semantic segmentation of large-scale point clouds. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11108–11117 (2020)
Jiang, M., et al.: 4D high-resolution imagery of point clouds for automotive mmwave radar. IEEE Trans. Intell. Transp. Syst. 1–15 (2023)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: International Conference for Learning Representations (2015)
Klingner, M., et al.: X3KD: knowledge distillation across modalities, tasks and stages for multi-camera 3D object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 13343–13353 (2023)
Lang, A.H., Vora, S., Caesar, H., Zhou, L., Yang, J., Beijbom, O.: Pointpillars: fast encoders for object detection from point clouds. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2019)
Lang, I., Manor, A., Avidan, S.: Samplenet: differentiable point cloud sampling. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7578–7588 (2020)
Li, D., Wei, Y., Zhu, R.: A comparative study on point cloud down-sampling strategies for deep learning-based crop organ segmentation. Plant Methods 19(1), 124 (2023)
Li, J., et al.: BEV-LGKD: a unified lidar-guided knowledge distillation framework for multi-view BEV 3D object detection. IEEE Trans. Intell. Veh. 1–10 (2023)
Li, J., Luo, C., Yang, X.: Pillarnext: rethinking network designs for 3D object detection in lidar point clouds. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17567–17576 (2023)
Li, Q., Jin, S., Yan, J.: Mimicking very efficient network for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6356–6364 (2017)
Li, Z., Li, Y., Wang, Y., Xie, G., Qu, H., Lyu, Z.: A lightweight model for 3D point cloud object detection. Appl. Sci. 13(11) (2023)
Liu, J., Zhao, Q., Xiong, W., Huang, T., Han, Q.L., Zhu, B.: Smurf: spatial multi-representation fusion for 3D object detection with 4D imaging radar. IEEE Trans. Intell. Veh. 1–14 (2023)
Mao, J., et al.: One million scenes for autonomous driving: once dataset. In: Vanschoren, J., Yeung, S. (eds.) Proceedings of the Neural Information Processing Systems Track on Datasets and Benchmarks, vol. 1 (2021)
Meyer, M., Kuschk, G.: Automotive radar dataset for deep learning based 3D object detection. In: 2019 16th European Radar Conference (EuRAD), pp. 129–132. IEEE (2019)
Nguyen, C.H., Nguyen, T.C., Tang, T.N., Phan, N.L.: Improving object detection by label assignment distillation. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), pp. 1005–1014 (2022)
Nobis, F., Shafiei, E., Karle, P., Betz, J., Lienkamp, M.: Radar voxel fusion for 3D object detection. Appl. Sci. 11(12) (2021)
Paek, D.H., Kong, S.H., Wijaya, K.T.: K-radar: 4D radar object detection for autonomous driving in various weather conditions. In: Thirty-Sixth Conference on Neural Information Processing Systems Datasets and Benchmarks Track (2022)
Palffy, A., Pool, E., Baratam, S., Kooij, J.F.P., Gavrila, D.M.: Multi-class road user detection with 3+1D radar in the view-of-delft dataset. IEEE Robot. Autom. Lett. 7(2), 4961–4968 (2022)
Palmer, P., Krueger, M., Altendorfer, R., Adam, G., Bertram, T.: Reviewing 3D object detectors in the context of high-resolution 3+1D radar. In: Workshop on 3D Vision and Robotics at the Conference on Computer Vision and Pattern Recognition 2023 (2023)
Palmer, P., Krueger, M., Altendorfer, R., Bertram, T.: Ego-motion estimation and dynamic motion separation from 3D point clouds for accumulating data and improving 3D object detection. In: AmE 2023 - Automotive meets Electronics; 14. GMM Symposium, pp. 86–91 (2023)
Qi, C.R., Yi, L., Su, H., Guibas, L.J.: Pointnet++: deep hierarchical feature learning on point sets in a metric space. In: Advances in Neural Information Processing Systems, vol. 30 (2017)
Rebut, J., Ouaknine, A., Malik, W., Pérez, P.: Raw high-definition radar for multi-task learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17021–17030 (2022)
Shi, S., et al.: PV-RCNN: point-voxel feature set abstraction for 3D object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10529–10538 (2020)
Shi, S., Wang, X., Li, H.: Pointrcnn: 3D object proposal generation and detection from point cloud. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–779 (2019)
Smith, L.N., Topin, N.: Super-convergence: very fast training of neural networks using large learning rates. In: Artificial Intelligence and Machine Learning for Multi-Domain Operations Applications, vol. 11006, pp. 369–386. SPIE (2019)
Stephan, M., Hazra, S., Santra, A., Weigel, R., Fischer, G.: People counting solution using an FMCW radar with knowledge distillation from camera data. In: 2021 IEEE Sensors, pp. 1–4 (2021)
Sun, P., et al.: Scalability in perception for autonomous driving: Waymo open dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2020)
Sun, P., et al.: Scalability in perception for autonomous driving: Waymo open dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2446–2454 (2020)
Sun, S., Zhang, Y.D.: 4D automotive radar sensing for autonomous vehicles: a sparsity-oriented approach. IEEE J. Sel. Top. Signal Process. 15(4), 879–891 (2021)
Tan, B., et al.: 3D object detection for multi-frame 4D automotive millimeter-wave radar point cloud. IEEE Sens. J. 23(11), 11125–11138 (2022)
Tung, F., Mori, G.: Similarity-preserving knowledge distillation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1365–1374 (2019)
Wang, L., et al.: Multi-modal and multi-scale fusion 3D object detection of 4D radar and lidar for autonomous driving. IEEE Trans. Veh. Technol. 72(5), 5628–5641 (2023)
Wang, T., Yuan, L., Zhang, X., Feng, J.: Distilling object detectors with fine-grained feature imitation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4933–4942 (2019)
Wei, Y., Wei, Z., Rao, Y., Li, J., Zhou, J., Lu, J.: Lidar distillation: bridging the beam-induced domain gap for 3D object detection. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13699, pp. 179–195. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19842-7_11
Wu, H., Wen, C., Shi, S., Li, X., Wang, C.: Virtual sparse convolution for multimodal 3D object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 21653–21662 (2023)
Xiao, A., Huang, J., Guan, D., Zhan, F., Lu, S.: Transfer learning from synthetic to real lidar point cloud for semantic segmentation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, pp. 2795–2803 (2022)
Xiao, Y., Liu, Y., Luan, K., Cheng, Y., Chen, X., Lu, H.: Deep lidar-radar-visual fusion for object detection in urban environments. Remote Sens. 15(18) (2023)
Xiong, W., Liu, J., Huang, T., Han, Q.L., Xia, Y., Zhu, B.: LXL: lidar excluded lean 3D object detection with 4D imaging radar and camera fusion. IEEE Trans. Intell. Veh. 1–14 (2023)
Xu, B., et al.: RPFA-Net: a 4D radar pillar feature attention network for 3D object detection. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC), pp. 3061–3066 (2021)
Yan, Q., Wang, Y.: MVFAN: multi-view feature assisted network for 4D radar object detection. In: Luo, B., Cheng, L., Wu, Z.G., Li, H., Li, C. (eds.) ICONIP 2023. LNCS, vol. 14450, pp. 493–511. Springer, Cham (2023). https://doi.org/10.1007/978-981-99-8070-3_38
Yang, J., Shi, S., Ding, R., Wang, Z., Qi, X.: Towards efficient 3D object detection with knowledge distillation. In: Advances in Neural Information Processing Systems, vol. 35, pp. 21300–21313. Curran Associates, Inc. (2022)
Yang, Z., Sun, Y., Liu, S., Jia, J.: 3DSSD: point-based 3D single stage object detector. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11040–11048 (2020)
You, Y., et al.: Pseudo-lidar++: accurate depth for 3D object detection in autonomous driving. In: ICLR (2020)
Zamanakos, G., Tsochatzidis, L., Amanatiadis, A., Pratikakis, I.: A comprehensive survey of lidar-based 3D object detection methods with deep learning for autonomous driving. Comput. Graph. 99, 153–181 (2021)
Zhang, J., et al.: NTU4DRadLM: 4D radar-centric multi-modal dataset for localization and mapping. In: 2023 IEEE 26th International Conference on Intelligent Transportation Systems (ITSC) (2023)
Zhang, L., Dong, R., Tai, H.S., Ma, K.: Pointdistiller: structured knowledge distillation towards efficient and compact 3D detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 21791–21801 (2023)
Zhang, X., et al.: Dual radar: a multi-modal dataset with dual 4D radar for autononous driving. arXiv preprint arXiv:2310.07602 (2023)
Zhang, Y., Hu, Q., Xu, G., Ma, Y., Wan, J., Guo, Y.: Not all points are equal: learning highly efficient point-based detectors for 3D lidar point clouds. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 18953–18962 (2022)
Zhao, M., et al.: Through-wall human pose estimation using radio signals. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7356–7365 (2018)
Zheng, L., et al.: Rcfusion: fusing 4-D radar and camera with bird’s-eye view features for 3-D object detection. IEEE Trans. Instrum. Meas. 72, 1–14 (2023)
Zheng, L., et al.: TJ4DRadSet: a 4D radar dataset for autonomous driving. In: 2022 IEEE 25th International Conference on Intelligent Transportation Systems (ITSC), pp. 493–498 (2022)
Zhou, T., Chen, J., Shi, Y., Jiang, K., Yang, M., Yang, D.: Bridging the view disparity between radar and camera features for multi-modal fusion 3D object detection. IEEE Trans. Intell. Veh. 8(2), 1523–1535 (2023)
Zhou, Y., Tuzel, O.: Voxelnet: end-to-end learning for point cloud based 3D object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4490–4499 (2018)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Palmer, P., Krüger, M., Schütte, S., Altendorfer, R., Adam, G., Bertram, T. (2025). LEROjD: Lidar Extended Radar-Only Object Detection. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15118. Springer, Cham. https://doi.org/10.1007/978-3-031-73027-6_22
Download citation
DOI: https://doi.org/10.1007/978-3-031-73027-6_22
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-73026-9
Online ISBN: 978-3-031-73027-6
eBook Packages: Computer ScienceComputer Science (R0)