Skip to main content

Distributed Active Client Selection With Noisy Clients Using Model Association Scores

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15118))

Included in the following conference series:

  • 234 Accesses

Abstract

Active client selection (ACS) strategically identifies clients for model updates during each training round of federated learning. In scenarios with limited communication resources, ACS emerges as a superior alternative to random client selection, significantly improving the convergence rate. However, existing ACS methods struggle with clients providing noisy updates, e.g. those from noisy labels. To address this challenge, we present a new ACS algorithm for scenarios with unknown noisy clients. Our algorithm constructs a client sampling distribution based on the global association among model updates, which quantifies the ability of a client’s model update to align with those from other clients. By leveraging these associations, we efficiently identify and mitigate the impact of clients with substantial noise that could disrupt training. This approach is simple, computationally efficient, and requires no hyperparameter tuning. Experiments on six benchmark datasets demonstrate that conventional ACS methods fail to outperform random selection. In contrast, our approach significantly enhances convergence speed while using the same communication resources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Allouah, Y., Farhadkhani, S., Guerraoui, R., Gupta, N., Pinot, R., Stephan, J.: Fixing by mixing: a recipe for optimal Byzantine ML under heterogeneity. In: Proceedings of the International Conference on Artificial Intelligence and Statistics (2023)

    Google Scholar 

  2. Amiri, M.M., Gunduz, D., Kulkarni, S.R., Poor, H.V.: Federated learning with quantized global model updates. arXiv arXiv:2006.10672 (2020)

  3. Bell, S., Upchurch, P., Snavely, N., Bala, K.: Material recognition in the wild with the materials in context database. In: CVPR, pp. 3479–3487 (2015)

    Google Scholar 

  4. Bengar, J.Z., van de Weijer, J., Twardowski, B., Raducanu, B.: Reducing label effort: self-supervised meets active learning. In: ICCV Workshops (2021)

    Google Scholar 

  5. Bernhardt, M., et al.: Active label cleaning for improved dataset quality under resource constraints. Nat. Commun. 13 (2022)

    Google Scholar 

  6. Biswas, S., Young, K., Griffith, J.: A comparison of automatic labelling approaches for sentiment analysis. arXiv arXiv:2211.02976 (2022)

  7. Blanchard, P., Mhamdi, E.M.E., Guerraoui, R., Stainer, J.: Machine learning with adversaries: Byzantine tolerant gradient descent. In: NIPS (2017)

    Google Scholar 

  8. Bossard, L., Guillaumin, M., Van Gool, L.: Food-101 – mining discriminative components with random forests. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8694, pp. 446–461. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10599-4_29

    Chapter  Google Scholar 

  9. Cho, Y.J., Wang, J., Joshi, G.: Towards understanding biased client selection in federated learning. In: Proceedings of the International Conference on Artificial Intelligence and Statistics (2022)

    Google Scholar 

  10. Cohen, G., Afshar, S., Tapson, J., van Schaik, A.: EMNIST: extending MNIST to handwritten letters. In: International Joint Conference on Neural Networks, pp. 2921–2926 (2017)

    Google Scholar 

  11. Dai, R., Shen, L., He, F., Tian, X., Tao, D.: DisPFL: towards communication-efficient personalized federated learning via decentralized sparse training. In: Proceedings of the International Conference on Machine Learning, pp. 162:4587–162:4604 (2022)

    Google Scholar 

  12. Darlow, L.N., Crowley, E.J., Antoniou, A., Storkey, A.J.: CINIC-10 is not ImageNet or CIFAR-10. arXiv arXiv:1810.03505 (2018)

  13. Data, D., Diggavi, S.: Byzantine-resilient high-dimensional SGD with local iterations on heterogeneous data. In: Proceedings of the International Conference on Machine Learning (2021)

    Google Scholar 

  14. Fraboni, Y., Vidal, R., Kameni, L., Lorenzi, M.: Clustered sampling: low-variance and improved representativity for clients selection in federated learning. In: Proceedings of the International Conference on Machine Learning, pp. 139:3407–139:3416 (2021)

    Google Scholar 

  15. Goetz, J., Malik, K., Bui, D., Moon, S., Liu, H., Kumar, A.: Active federated learning. arXiv arXiv:1909.12641 (2019)

  16. Han, B., et al.: Masking: a new perspective of noisy supervision. In: NeurIPS (2018)

    Google Scholar 

  17. Han, B., et al.: Co-teaching: robust training of deep neural networks with extremely noisy labels. In: NeurIPS (2018)

    Google Scholar 

  18. Hsu, T.-M.H., Qi, H., Brown, M.: Federated visual classification with real-world data distribution. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12355, pp. 76–92. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58607-2_5

    Chapter  Google Scholar 

  19. Huang, H., et al.: Active client selection for clustered federated learning. IEEE Trans. Neural Netw. Learn. Syst. (2023, early access)

    Google Scholar 

  20. Huang, J., Qu, L., Jia, R., Zhao, B.: O2U-Net: a simple noisy label detection approach for deep neural networks. In: Proceedings of the International Conference on Computer Vision, pp. 3326–3334 (2019)

    Google Scholar 

  21. Jiang, L., Zhou, Z., Leung, T., Li, L.J., Fei-Fei, L.: MentorNet: learning data-driven curriculum for very deep neural networks on corrupted labels. In: Proceedings of the International Conference on Machine Learning (2018)

    Google Scholar 

  22. Karimireddy, S.P., He, L., Jaggi, M.: Byzantine-robust learning on heterogeneous datasets via bucketing. In: Proceedings of the International Conference on Learning Representations (2022)

    Google Scholar 

  23. Kim, T., Bae, S., woo Lee, J., Yun, S.: Accurate and fast federated learning via combinatorial multi-armed bandits. arXiv arXiv:2012.03270 (2020)

  24. Kremer, J., Sha, F., Igel, C.: Robust active label correction. In: Proceedings of the International Conference on Artificial Intelligence and Statistics, pp. 308–316 (2018)

    Google Scholar 

  25. Krizhevsky, A.: Learning multiple layers of features from tiny images. University of Toronto, Technical report (2009)

    Google Scholar 

  26. Lai, F., Zhu, X., Madhyastha, H.V., Chowdhury, M.: Oort: efficient federated learning via guided participant selection. In: Proceedings of the USENIX Symposium on Operating Systems Design and Implementation, pp. 162:4587–162:4604 (2021)

    Google Scholar 

  27. Li, L., Xu, W., Chen, T., Giannakis, G.B., Ling, Q.: RSA: Byzantine-robust stochastic aggregation methods for distributed learning from heterogeneous datasets. In: AAAI (2019)

    Google Scholar 

  28. Li, P., Zhao, Y., Chen, L., Cheng, K., Xie, C., Wang, X., Hu, Q.: Uncertainty measured active client selection for federated learning in smart grid. In: Proceedings of the International Conference on Smart Internet of Things, pp. 148–153 (2022)

    Google Scholar 

  29. Liu, Y., Chen, C., Lyu, L., Wu, F., Wu, S., Chen, G.: Byzantine-robust learning on heterogeneous data via gradient splitting. In: Proceedings of the International Conference on Machine Learning (2023)

    Google Scholar 

  30. McMahan, H.B., Moore, E., Ramage, D., Hampson, S., Arcas, B.A.: Communication-efficient learning of deep networks from decentralized data. In: Proceedings of the International Conference on Artificial Intelligence and Statistics (2017)

    Google Scholar 

  31. Nam, H.W., Moon, Y.B., Oh, T.H.: FedPara: low-rank Hadamard product for communication-efficient federated learning. In: Proceedings of the International Conference on Learning Representations (2022)

    Google Scholar 

  32. Northcutt, C.G., Athalye, A., Mueller, J.: Pervasive label errors in test sets destabilize machine learning benchmarks. In: NeurIPS (2021)

    Google Scholar 

  33. Park, S., Jo, D.U., Choi, J.Y.: Over-fit: noisy-label detection based on the overfitted model property. arXiv arXiv:2106.07217 (2021)

  34. Pillutla, K., Kakade, S.M., Harchaoui, Z.: Robust aggregation for federated learning. IEEE Trans. Sig. Process. 70, 1142–1154 (2022)

    Article  MathSciNet  Google Scholar 

  35. Reisizadeh, A., Mokhtari, A., Hassani, H., Jadbabaie, A., Pedarsani, R.: FedPAQ: a communication-efficient federated learning method with periodic averaging and quantization. In: Proceedings of the International Conference on Artificial Intelligence and Statistics (2020)

    Google Scholar 

  36. Ribero, M., Vikalo, H.: Communication-efficient federated learning via optimal client sampling. arXiv arXiv:2007.15197 (2020)

  37. Tang, M., et al.: FedCor: correlation-based active client selection strategy for heterogeneous federated learning. In: CVPR, pp. 10102–10111 (2022)

    Google Scholar 

  38. Turan, B., Uribe, C.A., Wai, H.T., Alizadeh, M.: Robust distributed optimization with randomly corrupted gradients. IEEE Trans. Sig. Process. 70, 3484–3498 (2022)

    Article  MathSciNet  Google Scholar 

  39. Wang, H., Liu, B., Li, C., Yang, Y., Li, T.: Learning with noisy labels for sentence-level sentiment classification. In: EMNLP-IJCNLP (2019)

    Google Scholar 

  40. Wang, Y., Ma, X., Chen, Z., Luo, Y., Yi, J.F., Bailey, J.: Symmetric cross entropy for robust learning with noisy labels. In: Proceedings of the International Conference on Computer Vision (2019)

    Google Scholar 

  41. Yu, X., Han, B., Yao, J., Niu, G., Tsang, I.W., Sugiyama, M.: How does disagreement help generalization against label corruption? In: Proceedings of the International Conference on Machine Learning (2019)

    Google Scholar 

  42. Zhang, Z., Sabuncu, M.R.: Generalized cross entropy loss for training deep neural networks with noisy labels. In: NeurIPS (2018)

    Google Scholar 

  43. Zhu, Z., Hong, J., Drew, S., Zhou, J.: Resilient and communication efficient learning for heterogeneous federated systems. In: Proceedings of the International Conference on Machine Learning, pp. 162:27504–162:27526 (2022)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant (No. RS–2024–00337559, Enhancing Multi-Modal Large Language Model Adaptation through Robust and Efficient Distributed Collaborative Learning) and the Institute of Information & communications Technology Planning & Evaluation (IITP) grants (No. RS–2019–II191906, Artificial Intelligence Graduate School Program (POSTECH) and No. RS-2022-II220290, Visual Intelligence for Space-Time Understanding and Generation based on Multi-layered Visual Common Sense), all funded by the Korea government (MSIT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwang In Kim .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 10632 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kim, K.I. (2025). Distributed Active Client Selection With Noisy Clients Using Model Association Scores. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15118. Springer, Cham. https://doi.org/10.1007/978-3-031-73027-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-73027-6_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-73026-9

  • Online ISBN: 978-3-031-73027-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics