Skip to main content

GarmentCodeData: A Dataset of 3D Made-to-Measure Garments with Sewing Patterns

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Abstract

Recent research interest in learning-based processing of garments, from virtual fitting to generation and reconstruction, stumbles on a scarcity of high-quality public data in the domain. We contribute to resolving this need by presenting the first large-scale synthetic dataset of 3D made-to-measure garments with sewing patterns, as well as its generation pipeline. GarmentCodeData contains 115,000 data points that cover a variety of designs in many common garment categories: tops, shirts, dresses, jumpsuits, skirts, pants, etc., fitted to a variety of body shapes sampled from a custom statistical body model based on CAESAR [28], as well as a standard reference body shape, applying three different textile materials. To enable the creation of datasets of such complexity, we introduce a set of algorithms for automatically taking tailor’s measures on sampled body shapes, sampling strategies for sewing pattern design, and propose an automatic, open-source 3D garment draping pipeline based on a fast XPBD simulator [22], while contributing several solutions for collision resolution and drape correctness to enable scalability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://igl.ethz.ch/projects/GarmentCodeData/.

References

  1. Achenbach, J., Waltemate, T., Latoschik, M.E., Botsch, M.: Fast generation of realistic virtual humans. In: Proceedings of ACM Symposium on Virtual Reality Software and Technology, pp. 12:1–12:10 (2017)

    Google Scholar 

  2. Antić, D., Tiwari, G., Ozcomlekci, B., Marin, R., Pons-Moll, G.: CloSe: a 3D clothing segmentation dataset and model. In: International Conference on 3D Vision (3DV) (2024). http://arxiv.org/abs/2401.12051. https://virtualhumans.mpi-inf.mpg.de/close3dv24/

  3. Baraff, D., Witkin, A., Kass, M.: Untangling cloth. ACM Trans. Graph. 22(3), 862–870 (2003)

    Article  Google Scholar 

  4. Bartol, K., Bojanić, D., Petković, T., Peharec, S., Pribanić, T.: Linear regression vs. deep learning: a simple yet effective baseline for human body measurement. Sensors 22(5) (2022). https://doi.org/10.3390/s22051885

  5. Bertiche, H., Madadi, M., Escalera, S.: CLOTH3D: clothed 3D humans. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12365, pp. 344–359. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58565-5_21. http://arxiv.org/abs/1912.02792. http://link.springer.com/10.1007/978-3-030-58565-5_21

  6. Black, M.J., Patel, P., Tesch, J., Yang, J.: BEDLAM: a synthetic dataset of bodies exhibiting detailed lifelike animated motion. In: Proceedings IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8726–8737 (2023). https://bedlam.is.tue.mpg.de/

  7. Bouaziz, S., Tagliasacchi, A., Pauly, M.: Dynamic 2D/3D registration. In: Eurographics Tutorials, pp. 1–17 (2014)

    Google Scholar 

  8. Buffet, T., Rohmer, D., Barthe, L., Boissieux, L., Cani, M.P.: Implicit untangling: a robust solution for modeling layered clothing. ACM Trans. Graph. 38(4) (2019). https://doi.org/10.1145/3306346.3323010

  9. Cincotti, C.: Cloth self-collisions (2022). https://carmencincotti.com/2022-11-21/cloth-self-collisions

  10. Ho, H.I., Xue, L., Song, J., Hilliges, O.: Learning locally editable virtual humans. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2023). https://custom-humans.github.io/

  11. Jiang, B., Zhang, J., Hong, Y., Luo, J., Liu, L., Bao, H.: BCNet: learning body and cloth shape from a single image. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12365, pp. 18–35. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58565-5_2. https://github.com/jby1993/BCNet

  12. Korosteleva, M., Lee, S.H.: Generating datasets of 3D garments with sewing patterns. In: Conference on Neural Information Processing Systems (NeurIPS 2021) Track on Datasets and Benchmarks, pp. 1–10 (2021). https://doi.org/10.5281/ZENODO.5267549. https://github.com/maria-korosteleva/Garment-Pattern-Generator

  13. Korosteleva, M., Lee, S.H.: NeuralTailor: reconstructing sewing pattern structures from 3D point clouds of garments. ACM Trans. Graph. 1(1) (2022). http://arxiv.org/abs/2201.13063

  14. Korosteleva, M., Sorkine-Hornung, O.: GarmentCode: programming parametric sewing patterns. ACM Trans. Graph. 42(6) (2023). https://doi.org/10.1145/3618351

  15. Lal Bhatnagar, B., Tiwari, G., Theobalt, C., Pons-Moll, G.: Multi-garment net: learning to dress 3D people from images. In: The IEEE International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, pp. 5420–5430. IEEE (2019)

    Google Scholar 

  16. Lewin, C.: Cloth self collision with predictive contacts (2018). https://api.semanticscholar.org/CorpusID:202704112

  17. Li, X., Li, G., Li, T., Lv, J., Mitrouchev, P.: Remodeling of mannequins based on automatic binding of mesh to anthropometric parameters. Vis. Comput. (2022). https://doi.org/10.1007/s00371-022-02738-1

    Article  Google Scholar 

  18. Liu, L., Xu, X., Lin, Z., Liang, J., Yan, S.: Towards garment sewing pattern reconstruction from a single image. ACM Trans. Graph. (2023). https://doi.org/10.1145/3618319. http://arxiv.org/abs/2311.04218. http://dx.doi.org/10.1145/3618319. https://sewformer.github.io/. https://github.com/sail-sg/sewformer

  19. Loper, M., Mahmood, N., Romero, J., Pons-Moll, G., Black, M.J.: SMPL: a skinned multi-person linear model. ACM Trans. Graph. 34(6), 248:1–248:16 (2015)

    Google Scholar 

  20. Lu, J.M., Wang, M.J.J.: Automated anthropometric data collection using 3D whole body scanners. Expert Syst. Appl. 35(1-2), 407–414 (2008). https://doi.org/10.1016/j.eswa.2007.07.008

  21. Ma, Q., et al.: Learning to dress 3D people in generative clothing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6469–6478. IEEE, Virtual (2020). https://cape.is.tue.mpg.de

  22. Macklin, M.: Warp: a high-performance python framework for GPU simulation and graphics, March 2022. https://github.com/nvidia/warp. nVIDIA GPU Technology Conference (GTC)

  23. Macklin, M., Müller, M., Chentanez, N.: XPBD: position-based simulation of compliant constrained dynamics. In: Proceedings - Motion in Games 2016: 9th International Conference on Motion in Games, MIG 2016, pp. 49–54. Association for Computing Machinery, Inc (2016). https://doi.org/10.1145/2994258.2994272

  24. Narain, R., Samii, A., O’Brien, J.F.: Adaptive anisotropic remeshing for cloth simulation. ACM Trans. Graph. 31(6) (2012). https://doi.org/10.1145/2366145.2366171

  25. Nourbakhsh Kaashki, N., Hu, P., Munteanu, A.: Anet: a deep neural network for automatic 3D anthropometric measurement extraction. IEEE Trans. Multimedia (2021). https://doi.org/10.1109/TMM.2021.3132487

    Article  Google Scholar 

  26. Pujades, S., et al.: The virtual caliper: rapid creation of metrically accurate avatars from 3D measurements. IEEE Trans. Vis. Comput. Graph. 25(5), 1887–1897 (2019). https://doi.org/10.1109/TVCG.2019.2898748

  27. Pumarola, A., Sanchez, J., Choi, G.P.T., Sanfeliu, A., Moreno-Noguer, F.: 3DPeople: modeling the geometry of dressed humans. In: Proceedings of the IEEE International Conference on Computer Vision, Seoul, Republic of Korea, pp. 2242–2251. IEEE (2019). https://arxiv.org/pdf/1904.04571.pdf

  28. Robinette, K.M., Blackwell, S., Daanen, H., Boehmer, M., Fleming, S.: Civilian American and European surface anthropometry resource (CAESAR), final report. volume 1: Summary. Technical report, Sytronics Inc (2002)

    Google Scholar 

  29. Ruiz, N., et al.: Human body measurement estimation with adversarial augmentation. In: Proceedings of the International Conference on 3D Vision (3DV), pp. 219–230 (2022). https://doi.org/10.1109/3DV57658.2022.00034

  30. Tiwari, G., Bhatnagar, B.L., Tung, T., Pons-Moll, G.: SIZER: a dataset and model for parsing 3D clothing and learning size sensitive 3D clothing (2020). http://arxiv.org/abs/2007.11610

  31. Ulmer, S.: At CSCS, energy efficiency is a key priority, even at high performance (2022). https://www.cscs.ch/science/computer-science-hpc/2022/at-cscs-energy-efficiency-is-a-key-priority-even-at-high-performance

  32. Vidaurre, R., Santesteban, I., Garces, E., Casas, D.: Fully convolutional graph neural networks for parametric virtual try-on. Comput. Graph. Forum 39(8), 145–156 (2020). http://arxiv.org/abs/2009.04592. https://www.youtube.com/watch?v=BFV85KS3Y6c. https://www.youtube.com/watch?v=xUEmB-NWyIQ

  33. Volino, P., Magnenat-Thalmann, N.: Resolving surface collisions through intersection contour minimization. ACM Trans. Graph. 25(3), 1154–1159 (2006)

    Article  Google Scholar 

  34. Wang, H., O’Brien, J.F., Ramamoorthi, R.: Data-driven elastic models for cloth: modeling and measurement. ACM Trans. Graph. 30(4), 1–12 (2011). https://doi.org/10.1145/2010324.1964966

  35. Wang, T.Y., Ceylan, D., Popović, J., Mitra, N.J.: Learning a shared shape space for multimodal garment design. ACM Trans. Graph. 37(6), 1–13 (2018). https://doi.org/10.1145/3272127.3275074

  36. Xu, W., et al.: ClothPose: a real-world benchmark for visual analysis of garment pose via an indirect recording solution. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 58–68 (2023)

    Google Scholar 

  37. Ye, J., et al.: A unified cloth untangling framework through discrete collision detection. Comput. Graph. Forum 36(7), 217–228 (2017). https://doi.org/10.1111/cgf.13287

  38. Zhang, C., Pujades, S., Black, M., Pons-Moll, G.: Detailed, accurate, human shape estimation from clothed 3D scan sequences. In: Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, Hawaii, USA. vol. 2017-January, pp. 5484–5493. IEEE (2017). https://doi.org/10.1109/CVPR.2017.582

  39. Zhou, B., et al.: ClothesNet: an information-rich 3D garment model repository with simulated clothes environment. In: IEEE/CVF International Conference on Computer Vision (ICCV) (2023). http://arxiv.org/abs/2308.09987. https://sites.google.com/view/clothesnet

  40. Zhu, H., et al.: Deep Fashion3D: a dataset and benchmark for 3D garment reconstruction from single images. In: Computer Vision – ECCV. pp. 512–530. arXiv (2020). http://arxiv.org/abs/2003.12753. https://kv2000.github.io/2020/03/25/deepFashion3DRevisited/

  41. Zou, X., Han, X., Wong, W.: CLOTH4D: a dataset for clothed human reconstruction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). pp. 12847–12857 (2023). www.github.com/AemikaChow/AiDLab-fAshIon-Data. https://www.youtube.com/watch?v=8Cc_kl55bFo. https://openaccess.thecvf.com/content/CVPR2023/html/Zou_CLOTH4D_A_Dataset_for_Clothed_Human_Reconstruction_CVPR_2023_paper.html

Download references

Acknowledgments

This work was supported by the European Research Council (ERC) under the European Union’s Horizon 2020 Research and Innovation Programme (ERC Consolidator Grant, agreement No. 101003104, MYCLOTH). Stephan Wenninger has been funded by “Stiftung Innovation in der Hochschullehre” through the project “Hybrid Learning Center” (FBM2020-EA-690-01130). We thank Ami Beuret for his help in refactoring GarmentCode codebase. We are grateful to Jana Schuricht for her professional consultations on patternmaking and to members of IGL and GGG for their continuous support and cheer throughout this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Korosteleva .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 567 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Korosteleva, M. et al. (2025). GarmentCodeData: A Dataset of 3D Made-to-Measure Garments with Sewing Patterns. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15118. Springer, Cham. https://doi.org/10.1007/978-3-031-73027-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-73027-6_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-73026-9

  • Online ISBN: 978-3-031-73027-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics