Abstract
Recent research interest in learning-based processing of garments, from virtual fitting to generation and reconstruction, stumbles on a scarcity of high-quality public data in the domain. We contribute to resolving this need by presenting the first large-scale synthetic dataset of 3D made-to-measure garments with sewing patterns, as well as its generation pipeline. GarmentCodeData contains 115,000 data points that cover a variety of designs in many common garment categories: tops, shirts, dresses, jumpsuits, skirts, pants, etc., fitted to a variety of body shapes sampled from a custom statistical body model based on CAESAR [28], as well as a standard reference body shape, applying three different textile materials. To enable the creation of datasets of such complexity, we introduce a set of algorithms for automatically taking tailor’s measures on sampled body shapes, sampling strategies for sewing pattern design, and propose an automatic, open-source 3D garment draping pipeline based on a fast XPBD simulator [22], while contributing several solutions for collision resolution and drape correctness to enable scalability.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Achenbach, J., Waltemate, T., Latoschik, M.E., Botsch, M.: Fast generation of realistic virtual humans. In: Proceedings of ACM Symposium on Virtual Reality Software and Technology, pp. 12:1–12:10 (2017)
Antić, D., Tiwari, G., Ozcomlekci, B., Marin, R., Pons-Moll, G.: CloSe: a 3D clothing segmentation dataset and model. In: International Conference on 3D Vision (3DV) (2024). http://arxiv.org/abs/2401.12051. https://virtualhumans.mpi-inf.mpg.de/close3dv24/
Baraff, D., Witkin, A., Kass, M.: Untangling cloth. ACM Trans. Graph. 22(3), 862–870 (2003)
Bartol, K., Bojanić, D., Petković, T., Peharec, S., Pribanić, T.: Linear regression vs. deep learning: a simple yet effective baseline for human body measurement. Sensors 22(5) (2022). https://doi.org/10.3390/s22051885
Bertiche, H., Madadi, M., Escalera, S.: CLOTH3D: clothed 3D humans. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12365, pp. 344–359. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58565-5_21. http://arxiv.org/abs/1912.02792. http://link.springer.com/10.1007/978-3-030-58565-5_21
Black, M.J., Patel, P., Tesch, J., Yang, J.: BEDLAM: a synthetic dataset of bodies exhibiting detailed lifelike animated motion. In: Proceedings IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8726–8737 (2023). https://bedlam.is.tue.mpg.de/
Bouaziz, S., Tagliasacchi, A., Pauly, M.: Dynamic 2D/3D registration. In: Eurographics Tutorials, pp. 1–17 (2014)
Buffet, T., Rohmer, D., Barthe, L., Boissieux, L., Cani, M.P.: Implicit untangling: a robust solution for modeling layered clothing. ACM Trans. Graph. 38(4) (2019). https://doi.org/10.1145/3306346.3323010
Cincotti, C.: Cloth self-collisions (2022). https://carmencincotti.com/2022-11-21/cloth-self-collisions
Ho, H.I., Xue, L., Song, J., Hilliges, O.: Learning locally editable virtual humans. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2023). https://custom-humans.github.io/
Jiang, B., Zhang, J., Hong, Y., Luo, J., Liu, L., Bao, H.: BCNet: learning body and cloth shape from a single image. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12365, pp. 18–35. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58565-5_2. https://github.com/jby1993/BCNet
Korosteleva, M., Lee, S.H.: Generating datasets of 3D garments with sewing patterns. In: Conference on Neural Information Processing Systems (NeurIPS 2021) Track on Datasets and Benchmarks, pp. 1–10 (2021). https://doi.org/10.5281/ZENODO.5267549. https://github.com/maria-korosteleva/Garment-Pattern-Generator
Korosteleva, M., Lee, S.H.: NeuralTailor: reconstructing sewing pattern structures from 3D point clouds of garments. ACM Trans. Graph. 1(1) (2022). http://arxiv.org/abs/2201.13063
Korosteleva, M., Sorkine-Hornung, O.: GarmentCode: programming parametric sewing patterns. ACM Trans. Graph. 42(6) (2023). https://doi.org/10.1145/3618351
Lal Bhatnagar, B., Tiwari, G., Theobalt, C., Pons-Moll, G.: Multi-garment net: learning to dress 3D people from images. In: The IEEE International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, pp. 5420–5430. IEEE (2019)
Lewin, C.: Cloth self collision with predictive contacts (2018). https://api.semanticscholar.org/CorpusID:202704112
Li, X., Li, G., Li, T., Lv, J., Mitrouchev, P.: Remodeling of mannequins based on automatic binding of mesh to anthropometric parameters. Vis. Comput. (2022). https://doi.org/10.1007/s00371-022-02738-1
Liu, L., Xu, X., Lin, Z., Liang, J., Yan, S.: Towards garment sewing pattern reconstruction from a single image. ACM Trans. Graph. (2023). https://doi.org/10.1145/3618319. http://arxiv.org/abs/2311.04218. http://dx.doi.org/10.1145/3618319. https://sewformer.github.io/. https://github.com/sail-sg/sewformer
Loper, M., Mahmood, N., Romero, J., Pons-Moll, G., Black, M.J.: SMPL: a skinned multi-person linear model. ACM Trans. Graph. 34(6), 248:1–248:16 (2015)
Lu, J.M., Wang, M.J.J.: Automated anthropometric data collection using 3D whole body scanners. Expert Syst. Appl. 35(1-2), 407–414 (2008). https://doi.org/10.1016/j.eswa.2007.07.008
Ma, Q., et al.: Learning to dress 3D people in generative clothing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6469–6478. IEEE, Virtual (2020). https://cape.is.tue.mpg.de
Macklin, M.: Warp: a high-performance python framework for GPU simulation and graphics, March 2022. https://github.com/nvidia/warp. nVIDIA GPU Technology Conference (GTC)
Macklin, M., Müller, M., Chentanez, N.: XPBD: position-based simulation of compliant constrained dynamics. In: Proceedings - Motion in Games 2016: 9th International Conference on Motion in Games, MIG 2016, pp. 49–54. Association for Computing Machinery, Inc (2016). https://doi.org/10.1145/2994258.2994272
Narain, R., Samii, A., O’Brien, J.F.: Adaptive anisotropic remeshing for cloth simulation. ACM Trans. Graph. 31(6) (2012). https://doi.org/10.1145/2366145.2366171
Nourbakhsh Kaashki, N., Hu, P., Munteanu, A.: Anet: a deep neural network for automatic 3D anthropometric measurement extraction. IEEE Trans. Multimedia (2021). https://doi.org/10.1109/TMM.2021.3132487
Pujades, S., et al.: The virtual caliper: rapid creation of metrically accurate avatars from 3D measurements. IEEE Trans. Vis. Comput. Graph. 25(5), 1887–1897 (2019). https://doi.org/10.1109/TVCG.2019.2898748
Pumarola, A., Sanchez, J., Choi, G.P.T., Sanfeliu, A., Moreno-Noguer, F.: 3DPeople: modeling the geometry of dressed humans. In: Proceedings of the IEEE International Conference on Computer Vision, Seoul, Republic of Korea, pp. 2242–2251. IEEE (2019). https://arxiv.org/pdf/1904.04571.pdf
Robinette, K.M., Blackwell, S., Daanen, H., Boehmer, M., Fleming, S.: Civilian American and European surface anthropometry resource (CAESAR), final report. volume 1: Summary. Technical report, Sytronics Inc (2002)
Ruiz, N., et al.: Human body measurement estimation with adversarial augmentation. In: Proceedings of the International Conference on 3D Vision (3DV), pp. 219–230 (2022). https://doi.org/10.1109/3DV57658.2022.00034
Tiwari, G., Bhatnagar, B.L., Tung, T., Pons-Moll, G.: SIZER: a dataset and model for parsing 3D clothing and learning size sensitive 3D clothing (2020). http://arxiv.org/abs/2007.11610
Ulmer, S.: At CSCS, energy efficiency is a key priority, even at high performance (2022). https://www.cscs.ch/science/computer-science-hpc/2022/at-cscs-energy-efficiency-is-a-key-priority-even-at-high-performance
Vidaurre, R., Santesteban, I., Garces, E., Casas, D.: Fully convolutional graph neural networks for parametric virtual try-on. Comput. Graph. Forum 39(8), 145–156 (2020). http://arxiv.org/abs/2009.04592. https://www.youtube.com/watch?v=BFV85KS3Y6c. https://www.youtube.com/watch?v=xUEmB-NWyIQ
Volino, P., Magnenat-Thalmann, N.: Resolving surface collisions through intersection contour minimization. ACM Trans. Graph. 25(3), 1154–1159 (2006)
Wang, H., O’Brien, J.F., Ramamoorthi, R.: Data-driven elastic models for cloth: modeling and measurement. ACM Trans. Graph. 30(4), 1–12 (2011). https://doi.org/10.1145/2010324.1964966
Wang, T.Y., Ceylan, D., Popović, J., Mitra, N.J.: Learning a shared shape space for multimodal garment design. ACM Trans. Graph. 37(6), 1–13 (2018). https://doi.org/10.1145/3272127.3275074
Xu, W., et al.: ClothPose: a real-world benchmark for visual analysis of garment pose via an indirect recording solution. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 58–68 (2023)
Ye, J., et al.: A unified cloth untangling framework through discrete collision detection. Comput. Graph. Forum 36(7), 217–228 (2017). https://doi.org/10.1111/cgf.13287
Zhang, C., Pujades, S., Black, M., Pons-Moll, G.: Detailed, accurate, human shape estimation from clothed 3D scan sequences. In: Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, Hawaii, USA. vol. 2017-January, pp. 5484–5493. IEEE (2017). https://doi.org/10.1109/CVPR.2017.582
Zhou, B., et al.: ClothesNet: an information-rich 3D garment model repository with simulated clothes environment. In: IEEE/CVF International Conference on Computer Vision (ICCV) (2023). http://arxiv.org/abs/2308.09987. https://sites.google.com/view/clothesnet
Zhu, H., et al.: Deep Fashion3D: a dataset and benchmark for 3D garment reconstruction from single images. In: Computer Vision – ECCV. pp. 512–530. arXiv (2020). http://arxiv.org/abs/2003.12753. https://kv2000.github.io/2020/03/25/deepFashion3DRevisited/
Zou, X., Han, X., Wong, W.: CLOTH4D: a dataset for clothed human reconstruction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). pp. 12847–12857 (2023). www.github.com/AemikaChow/AiDLab-fAshIon-Data. https://www.youtube.com/watch?v=8Cc_kl55bFo. https://openaccess.thecvf.com/content/CVPR2023/html/Zou_CLOTH4D_A_Dataset_for_Clothed_Human_Reconstruction_CVPR_2023_paper.html
Acknowledgments
This work was supported by the European Research Council (ERC) under the European Union’s Horizon 2020 Research and Innovation Programme (ERC Consolidator Grant, agreement No. 101003104, MYCLOTH). Stephan Wenninger has been funded by “Stiftung Innovation in der Hochschullehre” through the project “Hybrid Learning Center” (FBM2020-EA-690-01130). We thank Ami Beuret for his help in refactoring GarmentCode codebase. We are grateful to Jana Schuricht for her professional consultations on patternmaking and to members of IGL and GGG for their continuous support and cheer throughout this project.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Korosteleva, M. et al. (2025). GarmentCodeData: A Dataset of 3D Made-to-Measure Garments with Sewing Patterns. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15118. Springer, Cham. https://doi.org/10.1007/978-3-031-73027-6_7
Download citation
DOI: https://doi.org/10.1007/978-3-031-73027-6_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-73026-9
Online ISBN: 978-3-031-73027-6
eBook Packages: Computer ScienceComputer Science (R0)