Abstract
Multimodal sensor fusion is an essential capability for autonomous robots, enabling object detection and decision-making in the presence of failing or uncertain inputs. While recent fusion methods excel in normal environmental conditions, these approaches fail in adverse weather, e.g., heavy fog, snow, or obstructions due to soiling. We introduce a novel multi-sensor fusion approach tailored to adverse weather conditions. In addition to fusing RGB and LiDAR sensors, which are employed in recent autonomous driving literature, our sensor fusion stack is also capable of learning from NIR gated camera and radar modalities to tackle low light and inclement weather.
We fuse multimodal sensor data through attentive, depth-based blending schemes, with learned refinement on the Bird’s Eye View (BEV) plane to combine image and range features effectively. Our detections are predicted by a transformer decoder that weighs modalities based on distance and visibility. We demonstrate that our method improves the reliability of multimodal sensor fusion in autonomous vehicles under challenging weather conditions, bridging the gap between ideal conditions and real-world edge cases. Our approach improves average precision by \(17.2\,AP\) compared to the next best method for vulnerable pedestrians in long distances and challenging foggy scenes. Our project page is available here (https://light.princeton.edu/samfusion/).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bai, X., et al.: TransFusion: robust lidar-camera fusion for 3D object detection with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1090–1099 (2022)
Baumann, N., et al.: CR3DT: camera-radar fusion for 3D detection and tracking. arXiv preprint arXiv:2403.15313 (2024)
Bijelic, M., et al.: Seeing through fog without seeing fog: deep multimodal sensor fusion in unseen adverse weather. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11682–11692 (2020)
Bijelic, M., Gruber, T., Ritter, W.: A benchmark for lidar sensors in fog: is detection breaking down? In: 2018 IEEE Intelligent Vehicles Symposium (IV), pp. 760–767. IEEE (2018)
Bijelic, M., Gruber, T., Ritter, W.: Benchmarking image sensors under adverse weather conditions for autonomous driving. In: 2018 IEEE Intelligent Vehicles Symposium (IV), pp. 1773–1779. IEEE (2018)
Brazil, G., Liu, X.: M3D-RPN: monocular 3D region proposal network for object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9287–9296 (2019)
Broedermann, T., Sakaridis, C., Dai, D., Van Gool, L.: HRFuser: a multi-resolution sensor fusion architecture for 2D object detection. In: IEEE International Conference on Intelligent Transportation Systems (ITSC) (2023)
Caesar, H., et al.: nuScenes: a multimodal dataset for autonomous driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11621–11631 (2020)
Cai, H., Zhang, Z., Zhou, Z., Li, Z., Ding, W., Zhao, J.: BEVFusion4D: learning lidar-camera fusion under bird’s-eye-view via cross-modality guidance and temporal aggregation. arXiv preprint arXiv:2303.17099 (2023)
Cai, Z., Vasconcelos, N.: Cascade R-CNN: high quality object detection and instance segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 43(5), 1483–1498 (2019)
Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) Computer Vision – ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part I, pp. 213–229. Springer International Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13
Chen, X., Ma, H., Wan, J., Li, B., Xia, T.: Multi-view 3D object detection network for autonomous driving. In: Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, pp. 1907–1915 (2017)
Chen, X., Zhang, T., Wang, Y., Wang, Y., Zhao, H.: FUTR3D: a unified sensor fusion framework for 3D detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 172–181 (2023)
Chen, Y., Li, Y., Zhang, X., Sun, J., Jia, J.: Focal sparse convolutional networks for 3D object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5428–5437 (2022)
Chen, Y., Liu, J., Zhang, X., Qi, X., Jia, J.: LargeKernel3D: scaling up kernels in 3D sparse CNNs. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13488–13498 (2023)
Chen, Y., Liu, J., Zhang, X., Qi, X., Jia, J.: VoxelNext: fully sparse VoxelNet for 3D object detection and tracking. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 21674–21683 (2023)
Contributors, M.: MMDetection3D: OpenMMLab next-generation platform for general 3D object detection. https://github.com/open-mmlab/mmdetection3d (2020)
Diaz-Ruiz, C.A., et al.: Ithaca365: dataset and driving perception under repeated and challenging weather conditions. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 21383–21392 (2022)
Ge, C., et al.: MetaBEV: solving sensor failures for BEV detection and map segmentation. arXiv preprint arXiv:2304.09801 (2023)
Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: the KITTI dataset. Int. J. Robot. Res. (IJRR) (2013)
Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? The KITTI vision benchmark suite. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 3354–3361. IEEE (2012)
Grauer, Y.: Active gated imaging in driver assistance system. Adv. Optical Technol. 3(2), 151–160 (2014)
He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Hu, Y., et al.: Planning-oriented autonomous driving (2023)
Huang, J., Huang, G., Zhu, Z., Ye, Y., Du, D.: BEVDet: high-performance multi-camera 3D object detection in bird-eye-view. arXiv preprint arXiv:2112.11790 (2021)
Huang, L., et al.: Leveraging vision-centric multi-modal expertise for 3D object detection. In: Advances in Neural Information Processing Systems, vol. 36 (2024)
Hwang, J.J., et al.: CramNet: camera-radar fusion with ray-constrained cross-attention for robust 3D object detection. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) European Conference on Computer Vision, pp. 388–405. Springer (2022). https://doi.org/10.1007/978-3-031-19839-7_23
Jiao, Y., Jie, Z., Chen, S., Chen, J., Ma, L., Jiang, Y.G.: MsmdFusion: fusing lidar and camera at multiple scales with multi-depth seeds for 3D object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 21643–21652 (2023)
Julca-Aguilar, F., Taylor, J., Bijelic, M., Mannan, F., Tseng, E., Heide, F.: Gated3D: monocular 3D object detection from temporal illumination cues. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2938–2948 (2021)
Ku, J., Harakeh, A., Waslander, S.L.: In defense of classical image processing: Fast depth completion on the CPU. In: 2018 15th Conference on Computer and Robot Vision (CRV), pp. 16–22. IEEE (2018)
Kuhn, H.W.: The Hungarian method for the assignment problem. Naval Res. Logistics (NRL) 52 (1955)
Lang, A.H., Vora, S., Caesar, H., Zhou, L., Yang, J., Beijbom, O.: PointPillars: fast encoders for object detection from point clouds. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12697–12705 (2019)
Li, J., et al.: Practical stereo matching via cascaded recurrent network with adaptive correlation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16263–16272 (2022)
Li, P., Chen, X., Shen, S.: Stereo R-CNN based 3D object detection for autonomous driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7644–7652 (2019)
Li, Q., Wang, Y., Wang, Y., Zhao, H.: HDMapNet: an online HD map construction and evaluation framework. CoRR abs/2107.06307 (2021)
Li, Y., Chen, Y., Qi, X., Li, Z., Sun, J., Jia, J.: Unifying voxel-based representation with transformer for 3D object detection. Adv. Neural. Inf. Process. Syst. 35, 18442–18455 (2022)
Li, Y., et al.: BEVDepth: acquisition of reliable depth for multi-view 3d object detection. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 37, pp. 1477–1485 (2023)
Li, Z., et al.: BEVFormer: learning bird’s-eye-view representation from multi-camera images via spatiotemporal transformers (2022)
Liang, M., Yang, B., Chen, Y., Hu, R., Urtasun, R.: Multi-task multi-sensor fusion for 3D object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7345–7353 (2019)
Liang, T., et al.: BEVFusion: a simple and robust lidar-camera fusion framework. Adv. Neural. Inf. Process. Syst. 35, 10421–10434 (2022)
Lin, Z., et al.: RCBEVDet: radar-camera fusion in bird’s eye view for 3D object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14928–14937 (2024)
Liu, X., Zheng, C., Cheng, K.B., Xue, N., Qi, G.J., Wu, T.: Monocular 3D object detection with bounding box denoising in 3D by perceiver. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6436–6446 (2023)
Liu, Y., et al.: PETRv2: a unified framework for 3D perception from multi-camera images. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3262–3272 (2023)
Liu, Z., Wu, Z., Tóth, R.: Smoke: Single-stage monocular 3D object detection via keypoint estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 996–997 (2020)
Liu, Z., et al.: BEVFusion: multi-task multi-sensor fusion with unified bird’s-eye view representation. In: 2023 IEEE International Conference on Robotics and Automation (ICRA), pp. 2774–2781. IEEE (2023)
Ma, X., Liu, S., Xia, Z., Zhang, H., Zeng, X., Ouyang, W.: Rethinking Pseudo-LiDAR representation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) Computer Vision – ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XIII, pp. 311–327. Springer International Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-58601-0_19
Meyer, M., Kuschk, G.: Automotive radar dataset for deep learning based 3D object detection. In: 2019 16th European Radar Conference (EuRAD), pp. 129–132. IEEE (2019)
Mirza, M.J., et al.: Robustness of object detectors in degrading weather conditions. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC), pp. 2719–2724. IEEE (2021)
Nabati, R., Qi, H.: CenterFusion: center-based radar and camera fusion for 3D object detection. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 1527–1536 (2021)
Paszke, A., et al.: Automatic differentiation in PyTorch. In: NIPS 2017 Workshop on Autodiff (2017). https://openreview.net/forum?id=BJJsrmfCZ
Peng, L., Chen, Z., Fu, Z., Liang, P., Cheng, E.: BEVSegFormer: bird’s eye view semantic segmentation from arbitrary camera rigs (2022)
Qi, C.R., Liu, W., Wu, C., Su, H., Guibas, L.J.: Frustum PointNets for 3D object detection from RGB-D data. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 918–927 (2018)
Qi, C.R., Yi, L., Su, H., Guibas, L.J.: PointNet++: deep hierarchical feature learning on point sets in a metric space. In: Advances in Neural Information Processing Systems, vol. 30 (2017)
Ranftl, R., Bochkovskiy, A., Koltun, V.: Vision transformers for dense prediction. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 12179–12188 (2021)
Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, vol. 28 (2015)
Shi, S., et al.: PV-RCNN: point-voxel feature set abstraction for 3D object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10529–10538 (2020)
Shi, S., Wang, X., Li, H.: PointRCNN: 3D object proposal generation and detection from point cloud. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 770–779 (2019)
Shi, S., Wang, Z., Shi, J., Wang, X., Li, H.: From points to parts: 3D object detection from point cloud with part-aware and part-aggregation network. IEEE Trans. Pattern Anal. Mach. Intell. 43(8), 2647–2664 (2020)
Simonelli, A., Bulo, S.R., Porzi, L., López-Antequera, M., Kontschieder, P.: Disentangling monocular 3D object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1991–1999 (2019)
Sindagi, V.A., Zhou, Y., Tuzel, O.: MVX-Net: multimodal VoxelNet for 3D object detection. In: 2019 International Conference on Robotics and Automation (ICRA), pp. 7276–7282. IEEE (2019)
Sun, J., Cao, Y., Chen, Q.A., Mao, Z.M.: Towards robust \(\{\)LiDAR-based\(\}\) perception in autonomous driving: General black-box adversarial sensor attack and countermeasures. In: 29th USENIX Security Symposium (USENIX Security 20), pp. 877–894 (2020)
Uricár, M., et al.: Desoiling dataset: restoring soiled areas on automotive fisheye cameras. In: Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops (2019)
Vora, S., Lang, A.H., Helou, B., Beijbom, O.: PointPainting: sequential fusion for 3D object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4604–4612 (2020)
Walia, A., et al.: Gated2Gated: self-supervised depth estimation from gated images. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2801–2811 (2021)
Walz, S., Bijelic, M., Ramazzina, A., Walia, A., Mannan, F., Heide, F.: Gated Stereo: joint depth estimation from gated and wide-baseline active stereo cues. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13252–13262 (2023)
Wang, C., Ma, C., Zhu, M., Yang, X.: PointAugmenting: cross-modal augmentation for 3D object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11794–11803 (2021)
Wang, H., et al.: UNITR: a unified and efficient multi-modal transformer for bird’s-eye-view representation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6792–6802 (2023)
Wang, J., Lan, S., Gao, M., Davis, L.S.: InfoFocus: 3D object detection for autonomous driving with dynamic information modeling. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12355, pp. 405–420. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58607-2_24
Wang, S., Caesar, H., Nan, L., Kooij, J.F.: UniBEV: multi-modal 3D object detection with uniform BEV encoders for robustness against missing sensor modalities. arXiv preprint arXiv:2309.14516 (2023)
Wang, T., Zhu, X., Pang, J., Lin, D.: FCOS3D: fully convolutional one-stage monocular 3D object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 913–922 (2021)
Wang, Y., et al.: Pillar-based object detection for autonomous driving. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12367, pp. 18–34. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58542-6_2
Wang, Y., Guizilini, V.C., Zhang, T., Wang, Y., Zhao, H., Solomon, J.: DETR3D: 3D object detection from multi-view images via 3D-to-2D queries. In: Conference on Robot Learning, pp. 180–191. PMLR (2022)
Wu, P., et al.: PV-RCNN++: semantical point-voxel feature interaction for 3D object detection. Vis. Comput. 39(6), 2425–2440 (2023)
Xie, Y., et al.: SparseFusion: fusing multi-modal sparse representations for multi-sensor 3D object detection (2023)
Xu, S., Zhou, D., Fang, J., Yin, J., Bin, Z., Zhang, L.: FusionPainting: multimodal fusion with adaptive attention for 3D object detection. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC), pp. 3047–3054. IEEE (2021)
Yan, J., et al.: Cross modal transformer: towards fast and robust 3D object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 18268–18278 (2023)
Yan, Y., Mao, Y., Li, B.: SECOND: sparsely embedded convolutional detection. Sensors 18(10), 3337 (2018)
Yang, B., Luo, W., Urtasun, R.: PIXOR: real-time 3D object detection from point clouds. In: Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, pp. 7652–7660 (2018)
Yang, Z., Sun, Y., Liu, S., Jia, J.: 3DSSD: point-based 3D single stage object detector. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11040–11048 (2020)
Yang, Z., Chen, J., Miao, Z., Li, W., Zhu, X., Zhang, L.: DeepInteraction: 3D object detection via modality interaction. Adv. Neural. Inf. Process. Syst. 35, 1992–2005 (2022)
Yin, T., Zhou, X., Krahenbuhl, P.: Center-based 3D object detection and tracking. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11784–11793 (2021)
Yin, T., Zhou, X., Krähenbühl, P.: Multimodal virtual point 3D detection. Adv. Neural. Inf. Process. Syst. 34, 16494–16507 (2021)
Yoo, J.H., Kim, Y., Kim, J., Choi, J.W.: 3D-CVF: generating joint camera and lidar features using cross-view spatial feature fusion for 3D object detection. In: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXVII 16, pp. 720–736. Springer (2020). https://doi.org/10.1007/978-3-030-58583-9_43
Zhang, J., Singh, S.: Visual-lidar odometry and mapping: low-drift, robust, and fast. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 2174–2181. IEEE (2015)
Zhou, Y., Tuzel, O.: VoxelNet: end-to-end learning for point cloud based 3D object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4490–4499 (2018)
Zhu, X., Su, W., Lu, L., Li, B., Wang, X., Dai, J.: Deformable \(\{\)detr\(\}\): deformable transformers for end-to-end object detection. In: International Conference on Learning Representations (2021)
Acknowledgments
This work was supported by the AI-SEE project with funding from the FFG, BMBF, and NRC-IRA. Felix Heide was supported by an NSF CAREER Award (2047359), a Packard Foundation Fellowship, a Sloan Research Fellowship, a Sony Young Faculty Award, a Project X Innovation Award, and an Amazon Science Research Award. Further the authors would like to thank Stefanie Walz, Samuel Brucker, Anush Kumar, Fathemeh Azimi and David Borts.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Palladin, E., Dietze, R., Narayanan, P., Bijelic, M., Heide, F. (2025). SAMFusion: Sensor-Adaptive Multimodal Fusion for 3D Object Detection in Adverse Weather. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15119. Springer, Cham. https://doi.org/10.1007/978-3-031-73030-6_27
Download citation
DOI: https://doi.org/10.1007/978-3-031-73030-6_27
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-73029-0
Online ISBN: 978-3-031-73030-6
eBook Packages: Computer ScienceComputer Science (R0)