Skip to main content

EAGLES: Efficient Accelerated 3D Gaussians with Lightweight EncodingS

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Abstract

Recently, 3D Gaussian splatting (3D-GS) has gained popularity in novel-view scene synthesis. It addresses the challenges of lengthy training times and slow rendering speeds associated with Neural Radiance Fields (NeRFs). Through rapid, differentiable rasterization of 3D Gaussians, 3D-GS achieves real-time rendering and accelerated training. They, however, demand substantial memory resources for both training and storage, as they require millions of Gaussians in their point cloud representation for each scene. We present a technique utilizing quantized embeddings to significantly reduce per-point memory storage requirements and a coarse-to-fine training strategy for a faster and more stable optimization of the Gaussian point clouds. Our approach develops a pruning stage which results in scene representations with fewer Gaussians, leading to faster training times and rendering speeds for real-time rendering of high resolution scenes. We reduce storage memory by more than an order of magnitude all while preserving the reconstruction quality. We validate the effectiveness of our approach on a variety of datasets and scenes preserving the visual quality while consuming 10–20\(\times \) less memory and faster training/inference speed. Code is available here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ballé, J., Minnen, D., Singh, S., Hwang, S.J., Johnston, N.: Variational image compression with a scale hyperprior. arXiv preprint arXiv:1802.01436 (2018)

  2. Banner, R., Nahshan, Y., Hoffer, E., Soudry, D.: Post-training 4-bit quantization of convolution networks for rapid-deployment. arXiv preprint arXiv:1810.05723 (2018)

  3. Barron, J.T., Mildenhall, B., Tancik, M., Hedman, P., Martin-Brualla, R., Srinivasan, P.P.: Mip-nerf: a multiscale representation for anti-aliasing neural radiance fields. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5855–5864 (2021)

    Google Scholar 

  4. Barron, J.T., Mildenhall, B., Verbin, D., Srinivasan, P.P., Hedman, P.: Mip-nerf 360: unbounded anti-aliased neural radiance fields. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5470–5479 (2022)

    Google Scholar 

  5. Bird, T., Ballé, J., Singh, S., Chou, P.A.: 3d scene compression through entropy penalized neural representation functions. In: 2021 Picture Coding Symposium (PCS), pp. 1–5. IEEE (2021)

    Google Scholar 

  6. Chen, H., He, B., Wang, H., Ren, Y., Lim, S.N., Shrivastava, A.: Nerv: neural representations for videos. Adv. Neural. Inf. Process. Syst. 34, 21557–21568 (2021)

    Google Scholar 

  7. Chen, W., Wilson, J., Tyree, S., Weinberger, K., Chen, Y.: Compressing neural networks with the hashing trick. In: International Conference on Machine Learning, pp. 2285–2294. PMLR (2015)

    Google Scholar 

  8. Chen, W., Wilson, J., Tyree, S., Weinberger, K.Q., Chen, Y.: Compressing convolutional neural networks in the frequency domain. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1475–1484 (2016)

    Google Scholar 

  9. Courbariaux, M., Bengio, Y., David, J.P.: Binaryconnect: training deep neural networks with binary weights during propagations. In: Advances in Neural Information Processing Systems, pp. 3123–3131 (2015)

    Google Scholar 

  10. Dettmers, T., Lewis, M., Belkada, Y., Zettlemoyer, L.: Llm. int8 (): 8-bit matrix multiplication for transformers at scale. arXiv preprint arXiv:2208.07339 (2022)

  11. Dupont, E., Goliński, A., Alizadeh, M., Teh, Y.W., Doucet, A.: Coin: Compression with implicit neural representations. arXiv preprint arXiv:2103.03123 (2021)

  12. Frankle, J., Carbin, M.: The lottery ticket hypothesis: Finding sparse, trainable neural networks. arXiv preprint arXiv:1803.03635 (2018)

  13. Frankle, J., Dziugaite, G.K., Roy, D.M., Carbin, M.: Pruning neural networks at initialization: Why are we missing the mark? arXiv preprint arXiv:2009.08576 (2020)

  14. Fridovich-Keil, S., Yu, A., Tancik, M., Chen, Q., Recht, B., Kanazawa, A.: Plenoxels: radiance fields without neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5501–5510 (2022)

    Google Scholar 

  15. Girish, S., Gupta, K., Singh, S., Shrivastava, A.: Lilnetx: Lightweight networks with extreme model compression and structured sparsification. arXiv preprint arXiv:2204.02965 (2022)

  16. Girish, S., Maiya, S.R., Gupta, K., Chen, H., Davis, L.S., Shrivastava, A.: The lottery ticket hypothesis for object recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 762–771 (2021)

    Google Scholar 

  17. Girish, S., Shrivastava, A., Gupta, K.: Shacira: scalable hash-grid compression for implicit neural representations. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 17513–17524 (2023)

    Google Scholar 

  18. Gong, Y., Liu, L., Yang, M., Bourdev, L.: Compressing deep convolutional networks using vector quantization. arXiv preprint arXiv:1412.6115 (2014)

  19. Han, S., Pool, J., Tran, J., Dally, W.J.: Learning both weights and connections for efficient neural networks. arXiv preprint arXiv:1506.02626 (2015)

  20. Hedman, P., Philip, J., Price, T., Frahm, J.M., Drettakis, G., Brostow, G.: Deep blending for free-viewpoint image-based rendering. ACM Trans. Graph. (ToG) 37(6), 1–15 (2018)

    Article  Google Scholar 

  21. Hoaglin, D.C., Welsch, R.E.: The hat matrix in regression and anova. Am. Stat. 32(1), 17–22 (1978)

    Article  Google Scholar 

  22. Kerbl, B., Kopanas, G., Leimkühler, T., Drettakis, G.: 3d gaussian splatting for real-time radiance field rendering. ACM Trans. Graph. (ToG) 42(4), 1–14 (2023)

    Article  Google Scholar 

  23. Knapitsch, A., Park, J., Zhou, Q.Y., Koltun, V.: Tanks and temples: benchmarking large-scale scene reconstruction. ACM Trans. Graph. (ToG) 36(4), 1–13 (2017)

    Article  Google Scholar 

  24. LeCun, Y., Denker, J.S., Solla, S.A.: Optimal brain damage. In: Advances in Neural Information Processing Systems, pp. 598–605 (1990)

    Google Scholar 

  25. Li, F., Zhang, B., Liu, B.: Ternary weight networks. arXiv preprint arXiv:1605.04711 (2016)

  26. Li, L., Shen, Z., Wang, Z., Shen, L., Bo, L.: Compressing volumetric radiance fields to 1 mb. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4222–4231 (2023)

    Google Scholar 

  27. Luo, A., Du, Y., Tarr, M., Tenenbaum, J., Torralba, A., Gan, C.: Learning neural acoustic fields. Adv. Neural. Inf. Process. Syst. 35, 3165–3177 (2022)

    Google Scholar 

  28. Maiya, S.R., et al.: Nirvana: Neural implicit representations of videos with adaptive networks and autoregressive patch-wise modeling. arXiv preprint arXiv:2212.14593 (2022)

  29. Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: NeRF: representing scenes as neural radiance fields for view synthesis. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 405–421. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_24

    Chapter  Google Scholar 

  30. Müller, T., Evans, A., Schied, C., Keller, A.: Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans. Graph. (ToG) 41(4), 1–15 (2022)

    Article  Google Scholar 

  31. Niemeyer, M., et al.: Radsplat: Radiance field-informed gaussian splatting for robust real-time rendering with 900+ fps. arXiv preprint arXiv:2403.13806 (2024)

  32. Oktay, D., Ballé, J., Singh, S., Shrivastava, A.: Scalable model compression by entropy penalized reparameterization. arXiv preprint arXiv:1906.06624 (2019)

  33. Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning library. Adv. Neural Inform. Process. Syst. 32 (2019)

    Google Scholar 

  34. Rastegari, M., Ordonez, V., Redmon, J., Farhadi, A.: XNOR-Net: imagenet classification using binary convolutional neural networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 525–542. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_32

    Chapter  Google Scholar 

  35. Reed, R.: Pruning algorithms-a survey. IEEE Trans. Neural Netw. 4(5), 740–747 (1993)

    Article  Google Scholar 

  36. Savarese, P., Silva, H., Maire, M.: Winning the lottery with continuous sparsification. Adv. Neural. Inf. Process. Syst. 33, 11380–11390 (2020)

    Google Scholar 

  37. Seeley, R.T.: Spherical harmonics. Am. Math. Monthly 73(4P2), 115–121 (1966)

    Google Scholar 

  38. Sitzmann, V., Chan, E., Tucker, R., Snavely, N., Wetzstein, G.: Metasdf: meta-learning signed distance functions. Adv. Neural. Inf. Process. Syst. 33, 10136–10147 (2020)

    Google Scholar 

  39. Sitzmann, V., Martel, J., Bergman, A., Lindell, D., Wetzstein, G.: Implicit neural representations with periodic activation functions. Adv. Neural. Inf. Process. Syst. 33, 7462–7473 (2020)

    Google Scholar 

  40. Strümpler, Y., Postels, J., Yang, R., Gool, L.V., Tombari, F.: Implicit neural representations for image compression. In: Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, 23–27 October 2022, Proceedings, Part XXVI. pp. 74–91. Springer (2022). https://doi.org/10.1007/978-3-031-19809-0_5

  41. Takikawa, T., et al.: Variable bitrate neural fields. In: ACM SIGGRAPH 2022 Conference Proceedings, pp. 1–9 (2022)

    Google Scholar 

  42. Takikawa, T., et al.: Neural geometric level of detail: Real-time rendering with implicit 3d shapes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11358–11367 (2021)

    Google Scholar 

  43. Tancik, M., et al.: Learned initializations for optimizing coordinate-based neural representations. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2846–2855 (2021)

    Google Scholar 

  44. Ullman, S.: The interpretation of structure from motion. Proc. Royal Soc. London. Ser. B. Biol. Sci. 203(1153), 405–426 (1979)

    Google Scholar 

  45. Yang, Y., Bamler, R., Mandt, S.: Improving inference for neural image compression. Adv. Neural. Inf. Process. Syst. 33, 573–584 (2020)

    Google Scholar 

  46. Zhang, D., Yang, J., Ye, D., Hua, G.: LQ-Nets: learned quantization for highly accurate and compact deep neural networks. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11212, pp. 373–390. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01237-3_23

    Chapter  Google Scholar 

  47. Zwicker, M., Pfister, H., Van Baar, J., Gross, M.: Ewa volume splatting. In: Proceedings Visualization, VIS 2001 pp. 29–538. IEEE (2001)

    Google Scholar 

  48. Zwicker, M., Pfister, H., Van Baar, J., Gross, M.: Surface splatting. In: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, pp. 371–378 (2001)

    Google Scholar 

Download references

Acknowledgements:

This work was partially supported by IARPA via Department of Interior/Interior Business Center (DOI/IBC) contract number 140D0423C0076. The U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright annotation thereon. The authors acknowledge UMD’s supercomputing resources made available for conducting this research. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of IARPA, DOI/IBC, or the U.S. Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharath Girish .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 123 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Girish, S., Gupta, K., Shrivastava, A. (2025). EAGLES: Efficient Accelerated 3D Gaussians with Lightweight EncodingS. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15121. Springer, Cham. https://doi.org/10.1007/978-3-031-73036-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-73036-8_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-73035-1

  • Online ISBN: 978-3-031-73036-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics