Abstract
Recently, 3D Gaussian splatting (3D-GS) has gained popularity in novel-view scene synthesis. It addresses the challenges of lengthy training times and slow rendering speeds associated with Neural Radiance Fields (NeRFs). Through rapid, differentiable rasterization of 3D Gaussians, 3D-GS achieves real-time rendering and accelerated training. They, however, demand substantial memory resources for both training and storage, as they require millions of Gaussians in their point cloud representation for each scene. We present a technique utilizing quantized embeddings to significantly reduce per-point memory storage requirements and a coarse-to-fine training strategy for a faster and more stable optimization of the Gaussian point clouds. Our approach develops a pruning stage which results in scene representations with fewer Gaussians, leading to faster training times and rendering speeds for real-time rendering of high resolution scenes. We reduce storage memory by more than an order of magnitude all while preserving the reconstruction quality. We validate the effectiveness of our approach on a variety of datasets and scenes preserving the visual quality while consuming 10–20\(\times \) less memory and faster training/inference speed. Code is available here.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ballé, J., Minnen, D., Singh, S., Hwang, S.J., Johnston, N.: Variational image compression with a scale hyperprior. arXiv preprint arXiv:1802.01436 (2018)
Banner, R., Nahshan, Y., Hoffer, E., Soudry, D.: Post-training 4-bit quantization of convolution networks for rapid-deployment. arXiv preprint arXiv:1810.05723 (2018)
Barron, J.T., Mildenhall, B., Tancik, M., Hedman, P., Martin-Brualla, R., Srinivasan, P.P.: Mip-nerf: a multiscale representation for anti-aliasing neural radiance fields. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5855–5864 (2021)
Barron, J.T., Mildenhall, B., Verbin, D., Srinivasan, P.P., Hedman, P.: Mip-nerf 360: unbounded anti-aliased neural radiance fields. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5470–5479 (2022)
Bird, T., Ballé, J., Singh, S., Chou, P.A.: 3d scene compression through entropy penalized neural representation functions. In: 2021 Picture Coding Symposium (PCS), pp. 1–5. IEEE (2021)
Chen, H., He, B., Wang, H., Ren, Y., Lim, S.N., Shrivastava, A.: Nerv: neural representations for videos. Adv. Neural. Inf. Process. Syst. 34, 21557–21568 (2021)
Chen, W., Wilson, J., Tyree, S., Weinberger, K., Chen, Y.: Compressing neural networks with the hashing trick. In: International Conference on Machine Learning, pp. 2285–2294. PMLR (2015)
Chen, W., Wilson, J., Tyree, S., Weinberger, K.Q., Chen, Y.: Compressing convolutional neural networks in the frequency domain. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1475–1484 (2016)
Courbariaux, M., Bengio, Y., David, J.P.: Binaryconnect: training deep neural networks with binary weights during propagations. In: Advances in Neural Information Processing Systems, pp. 3123–3131 (2015)
Dettmers, T., Lewis, M., Belkada, Y., Zettlemoyer, L.: Llm. int8 (): 8-bit matrix multiplication for transformers at scale. arXiv preprint arXiv:2208.07339 (2022)
Dupont, E., Goliński, A., Alizadeh, M., Teh, Y.W., Doucet, A.: Coin: Compression with implicit neural representations. arXiv preprint arXiv:2103.03123 (2021)
Frankle, J., Carbin, M.: The lottery ticket hypothesis: Finding sparse, trainable neural networks. arXiv preprint arXiv:1803.03635 (2018)
Frankle, J., Dziugaite, G.K., Roy, D.M., Carbin, M.: Pruning neural networks at initialization: Why are we missing the mark? arXiv preprint arXiv:2009.08576 (2020)
Fridovich-Keil, S., Yu, A., Tancik, M., Chen, Q., Recht, B., Kanazawa, A.: Plenoxels: radiance fields without neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5501–5510 (2022)
Girish, S., Gupta, K., Singh, S., Shrivastava, A.: Lilnetx: Lightweight networks with extreme model compression and structured sparsification. arXiv preprint arXiv:2204.02965 (2022)
Girish, S., Maiya, S.R., Gupta, K., Chen, H., Davis, L.S., Shrivastava, A.: The lottery ticket hypothesis for object recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 762–771 (2021)
Girish, S., Shrivastava, A., Gupta, K.: Shacira: scalable hash-grid compression for implicit neural representations. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 17513–17524 (2023)
Gong, Y., Liu, L., Yang, M., Bourdev, L.: Compressing deep convolutional networks using vector quantization. arXiv preprint arXiv:1412.6115 (2014)
Han, S., Pool, J., Tran, J., Dally, W.J.: Learning both weights and connections for efficient neural networks. arXiv preprint arXiv:1506.02626 (2015)
Hedman, P., Philip, J., Price, T., Frahm, J.M., Drettakis, G., Brostow, G.: Deep blending for free-viewpoint image-based rendering. ACM Trans. Graph. (ToG) 37(6), 1–15 (2018)
Hoaglin, D.C., Welsch, R.E.: The hat matrix in regression and anova. Am. Stat. 32(1), 17–22 (1978)
Kerbl, B., Kopanas, G., Leimkühler, T., Drettakis, G.: 3d gaussian splatting for real-time radiance field rendering. ACM Trans. Graph. (ToG) 42(4), 1–14 (2023)
Knapitsch, A., Park, J., Zhou, Q.Y., Koltun, V.: Tanks and temples: benchmarking large-scale scene reconstruction. ACM Trans. Graph. (ToG) 36(4), 1–13 (2017)
LeCun, Y., Denker, J.S., Solla, S.A.: Optimal brain damage. In: Advances in Neural Information Processing Systems, pp. 598–605 (1990)
Li, F., Zhang, B., Liu, B.: Ternary weight networks. arXiv preprint arXiv:1605.04711 (2016)
Li, L., Shen, Z., Wang, Z., Shen, L., Bo, L.: Compressing volumetric radiance fields to 1 mb. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4222–4231 (2023)
Luo, A., Du, Y., Tarr, M., Tenenbaum, J., Torralba, A., Gan, C.: Learning neural acoustic fields. Adv. Neural. Inf. Process. Syst. 35, 3165–3177 (2022)
Maiya, S.R., et al.: Nirvana: Neural implicit representations of videos with adaptive networks and autoregressive patch-wise modeling. arXiv preprint arXiv:2212.14593 (2022)
Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: NeRF: representing scenes as neural radiance fields for view synthesis. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 405–421. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_24
Müller, T., Evans, A., Schied, C., Keller, A.: Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans. Graph. (ToG) 41(4), 1–15 (2022)
Niemeyer, M., et al.: Radsplat: Radiance field-informed gaussian splatting for robust real-time rendering with 900+ fps. arXiv preprint arXiv:2403.13806 (2024)
Oktay, D., Ballé, J., Singh, S., Shrivastava, A.: Scalable model compression by entropy penalized reparameterization. arXiv preprint arXiv:1906.06624 (2019)
Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning library. Adv. Neural Inform. Process. Syst. 32 (2019)
Rastegari, M., Ordonez, V., Redmon, J., Farhadi, A.: XNOR-Net: imagenet classification using binary convolutional neural networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 525–542. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_32
Reed, R.: Pruning algorithms-a survey. IEEE Trans. Neural Netw. 4(5), 740–747 (1993)
Savarese, P., Silva, H., Maire, M.: Winning the lottery with continuous sparsification. Adv. Neural. Inf. Process. Syst. 33, 11380–11390 (2020)
Seeley, R.T.: Spherical harmonics. Am. Math. Monthly 73(4P2), 115–121 (1966)
Sitzmann, V., Chan, E., Tucker, R., Snavely, N., Wetzstein, G.: Metasdf: meta-learning signed distance functions. Adv. Neural. Inf. Process. Syst. 33, 10136–10147 (2020)
Sitzmann, V., Martel, J., Bergman, A., Lindell, D., Wetzstein, G.: Implicit neural representations with periodic activation functions. Adv. Neural. Inf. Process. Syst. 33, 7462–7473 (2020)
Strümpler, Y., Postels, J., Yang, R., Gool, L.V., Tombari, F.: Implicit neural representations for image compression. In: Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, 23–27 October 2022, Proceedings, Part XXVI. pp. 74–91. Springer (2022). https://doi.org/10.1007/978-3-031-19809-0_5
Takikawa, T., et al.: Variable bitrate neural fields. In: ACM SIGGRAPH 2022 Conference Proceedings, pp. 1–9 (2022)
Takikawa, T., et al.: Neural geometric level of detail: Real-time rendering with implicit 3d shapes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11358–11367 (2021)
Tancik, M., et al.: Learned initializations for optimizing coordinate-based neural representations. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2846–2855 (2021)
Ullman, S.: The interpretation of structure from motion. Proc. Royal Soc. London. Ser. B. Biol. Sci. 203(1153), 405–426 (1979)
Yang, Y., Bamler, R., Mandt, S.: Improving inference for neural image compression. Adv. Neural. Inf. Process. Syst. 33, 573–584 (2020)
Zhang, D., Yang, J., Ye, D., Hua, G.: LQ-Nets: learned quantization for highly accurate and compact deep neural networks. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11212, pp. 373–390. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01237-3_23
Zwicker, M., Pfister, H., Van Baar, J., Gross, M.: Ewa volume splatting. In: Proceedings Visualization, VIS 2001 pp. 29–538. IEEE (2001)
Zwicker, M., Pfister, H., Van Baar, J., Gross, M.: Surface splatting. In: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, pp. 371–378 (2001)
Acknowledgements:
This work was partially supported by IARPA via Department of Interior/Interior Business Center (DOI/IBC) contract number 140D0423C0076. The U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright annotation thereon. The authors acknowledge UMD’s supercomputing resources made available for conducting this research. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of IARPA, DOI/IBC, or the U.S. Government.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Girish, S., Gupta, K., Shrivastava, A. (2025). EAGLES: Efficient Accelerated 3D Gaussians with Lightweight EncodingS. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15121. Springer, Cham. https://doi.org/10.1007/978-3-031-73036-8_4
Download citation
DOI: https://doi.org/10.1007/978-3-031-73036-8_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-73035-1
Online ISBN: 978-3-031-73036-8
eBook Packages: Computer ScienceComputer Science (R0)