Abstract
The volume of unlabelled Earth observation (EO) data is huge, but many important applications lack labelled training data. However, EO data offers the unique opportunity to pair data from different modalities and sensors automatically based on geographic location and time, at virtually no human labor cost. We seize this opportunity to create MMEarth, a diverse multi-modal pretraining dataset at global scale. Using this new corpus of 1.2 million locations, we propose a Multi-Pretext Masked Autoencoder (MP-MAE) approach to learn general-purpose representations for optical satellite images. Our approach builds on the ConvNeXt V2 architecture, a fully convolutional masked autoencoder (MAE). Drawing upon a suite of multi-modal pretext tasks, we demonstrate that our MP-MAE approach outperforms both MAEs pretrained on ImageNet and MAEs pretrained on domain-specific satellite images. This is shown on several downstream tasks including image classification and semantic segmentation. We find that pretraining with multi-modal pretext tasks notably improves the linear probing performance compared to pretraining on optical satellite images only. This also leads to better label efficiency and parameter efficiency which are crucial aspects in global scale applications. (The MMEarth dataset is available on the project page: vishalned.github.io/mmearth. The dataset construction code is available here: github.com/vishalned/MMEarth-data. The MP-MAE code for training and evaluation is available here: github.com/vishalned/MMEarth-train).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
We use the latest GEO-Bench version v1.0 in which datasets were class-balanced.
References
Argaw, D.M., Lee, J.Y., Woodson, M., Kweon, I.S., Caba Heilbron, F.: Long-range multimodal pretraining for movie understanding. In: International Conference on Computer Vision (ICCV). IEEE (2023)
Assran, M., et al.: Self-supervised learning from images with a joint-embedding predictive architecture. In: Computer Vision and Pattern Recognition (CVPR), pp. 15619–15629 (2023)
Ayush, K., et al.: Geography-aware self-supervised learning. In: International Conference on Computer Vision (ICCV), pp. 10181–10190 (2021)
Bachmann, R., Mizrahi, D., Atanov, A., Zamir, A.: MultiMAE: multi-modal multi-task masked autoencoders. In: Avidan, S., Brostow, G., Cisse, M., Farinella, G.M., Hassner, T. (eds.) European Conference on Computer Vision (ECCV), pp. 348–367. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19836-6_20
Balestriero, R., et al.: A cookbook of self-supervised learning. arXiv preprint arXiv:2304.12210 (2023)
Bardes, A., et al.: Revisiting feature prediction for learning visual representations from video. arXiv preprint (2024)
Bastani, F., Wolters, P., Gupta, R., Ferdinando, J., Kembhavi, A.: SatlasPretrain: a large-scale dataset for remote sensing image understanding. In: International Conference on Computer Vision (ICCV), pp. 16772–16782 (2023)
Brown, C.F., et al.: Dynamic world, near real-time global 10 m land use land cover mapping. Sci. Data 9(1), 251 (2022)
Choy, C., Gwak, J., Savarese, S.: 4D spatio-temporal convnets: Minkowski convolutional neural networks. In: Computer Vision and Pattern Recognition (CVPR), pp. 3075–3084 (2019)
Christie, G., Fendley, N., Wilson, J., Mukherjee, R.: Functional map of the world. In: Computer Vision and Pattern Recognition (CVPR), pp. 6172–6180 (2018)
Cong, Y., et al.: SatMAE: pre-training transformers for temporal and multi-spectral satellite imagery. Adv. Neural Inf. Process. Syst. (NeurIPS) 35, 197–211 (2022)
Daudt, R.C., Wulf, H., Hafner, E.D., Bühler, Y., Schindler, K., Wegner, J.D.: Snow depth estimation at country-scale with high spatial and temporal resolution. ISPRS J. Photogramm. Remote. Sens. 197, 105–121 (2023)
Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: Computer Vision and Pattern Recognition (CVPR), pp. 248–255. IEEE (2009)
Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Burstein, J., Doran, C., Solorio, T. (eds.) Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, vol. 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019)
Dinerstein, E., et al.: An ecoregion-based approach to protecting half the terrestrial realm. Bioscience 67(6), 534–545 (2017)
Dosovitskiy, A., et al.: An image is worth 16 \(\times \) 16 words: transformers for image recognition at scale. In: International Conference on Learning Representations (ICLR) (2021)
Dubayah, R., et al.: The global ecosystem dynamics investigation: high-resolution laser ranging of the earth’s forests and topography. Sci. Remote Sens. 1, 100002 (2020)
Feichtenhofer, C., Fan, H., Li, Y., He, K.: Masked autoencoders as spatiotemporal learners. In: Oh, A.H., Agarwal, A., Belgrave, D., Cho, K. (eds.) Advances in Neural Information Processing Systems (NeurIPS) (2022)
Geng, X., Liu, H., Lee, L., Schuurmans, D., Levine, S., Abbeel, P.: Multimodal masked autoencoders learn transferable representations (2022)
Ghiasi, G., Zoph, B., Cubuk, E.D., Le, Q.V., Lin, T.Y.: Multi-task self-training for learning general representations. In: International Conference on Computer Vision (ICCV), pp. 8856–8865 (2021)
Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., Moore, R.: Google earth engine: planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18–27 (2017)
He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.: Masked autoencoders are scalable vision learners. In: Computer Vision and Pattern Recognition (CVPR), pp. 16000–16009 (2022)
Helber, P., Bischke, B., Dengel, A., Borth, D.: EuroSAT: a novel dataset and deep learning benchmark for land use and land cover classification. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 12(7), 2217–2226 (2019)
Kendall, A., Gal, Y., Cipolla, R.: Multi-task learning using uncertainty to weigh losses for scene geometry and semantics. In: Computer Vision and Pattern Recognition (CVPR), pp. 7482–7491 (2018)
Klemmer, K., Rolf, E., Robinson, C., Mackey, L., Rußwurm, M.: SatCLIP: global, general-purpose location embeddings with satellite imagery. arXiv preprint arXiv:2311.17179 (2023)
Kruitwagen, L., Story, K., Friedrich, J., Byers, L., Skillman, S., Hepburn, C.: A global inventory of photovoltaic solar energy generating units. Nature 598(7882), 604–610 (2021)
Lacoste, A., et al.: GEO-Bench: toward foundation models for earth monitoring. In: Advances in Neural Information Processing Systems (NeurIPS) Datasets and Benchmarks Track (2023)
Lang, N., Jetz, W., Schindler, K., Wegner, J.D.: A high-resolution canopy height model of the earth. Nat. Ecol. Evol. 7(11), 1778–1789 (2023)
Manas, O., Lacoste, A., Giró-i Nieto, X., Vazquez, D., Rodriguez, P.: Seasonal contrast: unsupervised pre-training from uncurated remote sensing data. In: International Conference on Computer Vision (ICCV), pp. 9414–9423 (2021)
Microsoft Open Source, McFarland, M., Emanuele, R., Morris, D., Augspurger, T.: microsoft/planetarycomputer, October 2022. https://doi.org/10.5281/zenodo.7261897
Mizrahi, D., et al.: 4M: massively multimodal masked modeling. In: Advances in Neural Information Processing Systems (NeurIPS) (2023)
Mohamed, A., et al.: Self-supervised speech representation learning: a review. IEEE J. Sel. Topics Signal Process. 16(6), 1179–1210 (2022)
Mommert, M., Kesseli, N., Hanna, J., Scheibenreif, L., Borth, D., Demir, B.: Ben-Ge: extending BigEarthNet with geographical and environmental data. In: IGARSS 2023-2023 IEEE International Geoscience and Remote Sensing Symposium, pp. 1016–1019. IEEE (2023)
Oquab, M., et al.: DINOv2: learning robust visual features without supervision (2023)
Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T., Efros, A.A.: Context encoders: feature learning by inpainting. In: Computer Vision and Pattern Recognition (CVPR), pp. 2536–2544 (2016)
Planet, Radiant Earth Foundation, Western Cape Department of Agriculture, German Aerospace Center (DLR): A fusion dataset for crop type classification in Western Cape, South Africa (2021). https://doi.org/10.34911/RDNT.GQY868
Radford, A., et al.: Learning transferable visual models from natural language supervision. In: International Conference on Machine Learning (ICML), pp. 8748–8763. PMLR (2021)
Reed, C.J., et al.: Scale-MAE: a scale-aware masked autoencoder for multiscale geospatial representation learning. In: International Conference on Computer Vision (ICCV), pp. 4088–4099 (2023)
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W., Frangi, A. (eds.) Medical Image Computing and Computer-Assisted Intervention (MICCAI), pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Rußwurm, M., Venkatesa, S.J., Tuia, D.: Large-scale detection of marine debris in coastal areas with Sentinel-2. IScience 26(12), 108402 (2023)
de Sa, V.R., Ballard, D.H.: Category learning through multimodality sensing. Neural Comput. 10(5), 1097–1117 (1998)
Sumbul, G., Charfuelan, M., Demir, B., Markl, V.: BigEarthNet: a large-scale benchmark archive for remote sensing image understanding. In: IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium, pp. 5901–5904. IEEE (2019)
Sumbul, G., et al.: BigEarthNet-MM: a large-scale, multimodal, multilabel benchmark archive for remote sensing image classification and retrieval [software and data sets]. IEEE Geosci. Remote Sens. Mag. 9(3), 174–180 (2021)
Tolan, J., et al.: Very high resolution canopy height maps from RGB imagery using self-supervised vision transformer and convolutional decoder trained on aerial lidar. Remote Sens. Environ. 300, 113888 (2024)
Tong, Z., Song, Y., Wang, J., Wang, L.: VideoMAE: masked autoencoders are data-efficient learners for self-supervised video pre-training. In: Oh, A.H., Agarwal, A., Belgrave, D., Cho, K. (eds.) Advances in Neural Information Processing Systems (NeurIPS) (2022)
Tseng, G., Zvonkov, I., Purohit, M., Rolnick, D., Kerner, H.: Lightweight, pre-trained transformers for remote sensing timeseries. arXiv preprint arXiv:2304.14065 (2023)
Tucker, C., et al.: Sub-continental-scale carbon stocks of individual trees in African drylands. Nature 615(7950), 80–86 (2023)
Van Horn, G., Cole, E., Beery, S., Wilber, K., Belongie, S., Mac Aodha, O.: Benchmarking representation learning for natural world image collections. In: Computer Vision and Pattern Recognition (CVPR), pp. 12884–12893 (2021)
Vandenhende, S., Georgoulis, S., Van Gansbeke, W., Proesmans, M., Dai, D., Van Gool, L.: Multi-task learning for dense prediction tasks: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 44(7), 3614–3633 (2021)
Vincent, P., Larochelle, H., Bengio, Y., Manzagol, P.A.: Extracting and composing robust features with denoising autoencoders. In: International Conference on Machine Learning (ICML), pp. 1096–1103. ACM (2008)
Wang, Y., Braham, N.A.A., Xiong, Z., Liu, C., Albrecht, C.M., Zhu, X.X.: SSL4EO-S12: a large-scale multi-modal, multi-temporal dataset for self-supervised learning in earth observation. arXiv preprint arXiv:2211.07044 (2022)
Wei, C., Fan, H., Xie, S., Wu, C.Y., Yuille, A., Feichtenhofer, C.: Masked feature prediction for self-supervised visual pre-training. In: Computer Vision and Pattern Recognition (CVPR), pp. 14668–14678 (2022)
Woo, S., et al.: ConvNeXt V2: co-designing and scaling convnets with masked autoencoders. In: Computer Vision and Pattern Recognition (CVPR), pp. 16133–16142 (2023)
Xie, Z., et al.: SimMIM: a simple framework for masked image modeling. In: Computer Vision and Pattern Recognition (CVPR), pp. 9653–9663 (2022)
Yin, L., et al.: Mapping smallholder cashew plantations to inform sustainable tree crop expansion in Benin. Remote Sens. Environ. 295, 113695 (2023)
Yu, X., Tang, L., Rao, Y., Huang, T., Zhou, J., Lu, J.: Point-BERT: pre-training 3D point cloud transformers with masked point modeling. In: Computer Vision and Pattern Recognition (CVPR), pp. 19313–19322 (2022)
Zamir, A.R., Sax, A., Shen, W., Guibas, L.J., Malik, J., Savarese, S.: Taskonomy: disentangling task transfer learning. In: Computer Vision and Pattern Recognition (CVPR), pp. 3712–3722 (2018)
Zhu, X.X., et al.: So2Sat LCZ42: a benchmark data set for the classification of global local climate zones [software and data sets]. IEEE Geosci. Remote Sens. Mag. 8(3), 76–89 (2020)
Acknowledgments
We thank Lucia Gordon for the valuable feedback. We greatly appreciate the open data policies of the Copernicus program and its partners ESA and ECMWF. We thank Google Earth Engine for hosting the data and providing free access. This work was supported in part by the Pioneer Centre for AI, DNRF grant number P1. The authors AK, CI, and NL acknowledge support by the research grant DeReEco (grant number 34306) from Villum Foundation. SO and CI acknowledge support by the research grant Global Wetland Center (grant number NNF23OC0081089) from Novo Nordisk Foundation. CI and SB acknowledge support by the European Union project ELIAS (grant agreement number 101120237). We thank the Danish e-Infrastructure Consortium (DeiC), Martin Brandt, and Konrad Schindler for their support with computing resources.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Nedungadi, V., Kariryaa, A., Oehmcke, S., Belongie, S., Igel, C., Lang, N. (2025). MMEarth: Exploring Multi-modal Pretext Tasks for Geospatial Representation Learning. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15122. Springer, Cham. https://doi.org/10.1007/978-3-031-73039-9_10
Download citation
DOI: https://doi.org/10.1007/978-3-031-73039-9_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-73038-2
Online ISBN: 978-3-031-73039-9
eBook Packages: Computer ScienceComputer Science (R0)