Skip to main content

MARs: Multi-view Attention Regularizations for Patch-Based Feature Recognition of Space Terrain

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15122))

Included in the following conference series:

  • 317 Accesses

Abstract

The visual detection and tracking of surface terrain is required for spacecraft to safely land on or navigate within close proximity to celestial objects. Current approaches rely on template matching with pre-gathered patch-based features, which are expensive to obtain and a limiting factor in perceptual capability. While recent literature has focused on in-situ detection methods to enhance navigation and operational autonomy, robust description is still needed. In this work, we explore metric learning as the lightweight feature description mechanism and find that current solutions fail to address inter-class similarity and multi-view observational geometry. We attribute this to the view-unaware attention mechanism and introduce Multi-view Attention Regularizations (MARs) to constrain the channel and spatial attention across multiple feature views, regularizing the what and where of attention focus. We thoroughly analyze many modern metric learning losses with and without MARs and demonstrate improved terrain-feature recognition performance by upwards of 85%. We additionally introduce the Luna-1 dataset, consisting of Moon crater landmarks and reference navigation frames from NASA mission data to support future research in this difficult task. Luna-1 and source code are publicly available at https://droneslab.github.io/mars/ .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ali, S., Sullivan, J., Maki, A., Carlsson, S.: A baseline for visual instance retrieval with deep convolutional networks. In: Proceedings of International Conference on Learning Representations (2015)

    Google Scholar 

  2. Ali-Bey, A., Chaib-Draa, B., Giguere, P.: MixVPR: feature mixing for visual place recognition. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 2998–3007 (2023)

    Google Scholar 

  3. An, X., et al.: Unicom: universal and compact representation learning for image retrieval. arXiv preprint arXiv:2304.05884 (2023)

  4. Bai, S., Bai, X.: Sparse contextual activation for efficient visual re-ranking. IEEE Trans. Image Process. 25(3), 1056–1069 (2016)

    Article  MathSciNet  Google Scholar 

  5. Bera, A., Wharton, Z., Liu, Y., Bessis, N., Behera, A.: SR-GNN: spatial relation-aware graph neural network for fine-grained image categorization. IEEE Trans. Image Process. 31, 6017–6031 (2022)

    Article  Google Scholar 

  6. Berton, G., Masone, C., Caputo, B.: Rethinking visual geo-localization for large-scale applications. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4878–4888 (2022)

    Google Scholar 

  7. Berton, G., Trivigno, G., Caputo, B., Masone, C.: EigenPlaces: training viewpoint robust models for visual place recognition. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 11080–11090 (2023)

    Google Scholar 

  8. Blender Online Community: Blender - A 3D Modelling and Rendering Package. Blender Foundation (2018). http://www.blender.org

  9. Bowles, M., Bromley, M., Allen, M., Scaife, A.: E (2) equivariant self-attention for radio astronomy. arXiv preprint arXiv:2111.04742 (2021)

  10. Brewer, C., et al.: NASA spacecube intelligent multi-purpose system for enabling remote sensing, communication, and navigation in mission architectures. In: Proceedings of the Small Satellite Conference. No. SSC20-VI-07, AIAA/USU (2020)

    Google Scholar 

  11. Bruintjes, R.J., Motyka, T., van Gemert, J.: What affects learned equivariance in deep image recognition models? In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4838–4846 (2023)

    Google Scholar 

  12. Caron, M., Misra, I., Mairal, J., Goyal, P., Bojanowski, P., Joulin, A.: Unsupervised learning of visual features by contrasting cluster assignments. Adv. Neural. Inf. Process. Syst. 33, 9912–9924 (2020)

    Google Scholar 

  13. Chase, T., Goodwill, J., Dantu, K., Wilson, C.: Profiling vision-based deep learning architectures on NASA spacecube platforms. In: 2024 IEEE Aerospace Conference, pp. 1–16 (2024). https://doi.org/10.1109/AERO58975.2024.10521096

  14. Chase Jr, T., Gnam, C., Crassidis, J., Dantu, K.: You only crash once: improved object detection for real-time, sim-to-real hazardous terrain detection and classification for autonomous planetary landings. arXiv preprint arXiv:2303.04891 (2023)

  15. Chen, N., Villar, S.: Se (3)-equivariant self-attention via invariant features. In: Machine Learning for Physics NeurIPS Workshop (2022)

    Google Scholar 

  16. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: International Conference on Machine Learning, pp. 1597–1607. PMLR (2020)

    Google Scholar 

  17. Chen, W., et al.: Deep learning for instance retrieval: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 45(6), 7270–7292 (2023). https://doi.org/10.1109/TPAMI.2022.3218591

    Article  Google Scholar 

  18. Chen, W., et al.: Beyond appearance: a semantic controllable self-supervised learning framework for human-centric visual tasks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15050–15061 (2023)

    Google Scholar 

  19. Cheng, G., Han, J., Lu, X.: Remote sensing image scene classification: benchmark and state of the art. Proc. IEEE 105(10), 1865–1883 (2017)

    Article  Google Scholar 

  20. Chou, P.Y., Kao, Y.Y., Lin, C.H.: Fine-grained visual classification with high-temperature refinement and background suppression. arXiv preprint arXiv:2303.06442 (2023)

  21. Chung, H., Nam, W.J., Lee, S.W.: Rotation invariant aerial image retrieval with group convolutional metric learning (2020)

    Google Scholar 

  22. Cohen, T.S., Welling, M.: Steerable cnns. arXiv preprint arXiv:1612.08498 (2016)

  23. Dai, J., et al.: Deformable convolutional networks (2017)

    Google Scholar 

  24. Darvish, M., Pouramini, M., Bahador, H.: Towards fine-grained image classification with generative adversarial networks and facial landmark detection. In: 2022 International Conference on Machine Vision and Image Processing (MVIP), pp. 1–6. IEEE (2022)

    Google Scholar 

  25. Deng, J., Guo, J., Liu, T., Gong, M., Zafeiriou, S.: Sub-center ArcFace: boosting face recognition by large-scale noisy web faces. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020, Part XI. LNCS, vol. 12356, pp. 741–757. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58621-8_43

    Chapter  Google Scholar 

  26. Diao, Q., Jiang, Y., Wen, B., Sun, J., Yuan, Z.: MetaFormer: a unified meta framework for fine-grained recognition. arXiv preprint arXiv:2203.02751 (2022)

  27. Dieleman, S., De Fauw, J., Kavukcuoglu, K.: Exploiting cyclic symmetry in convolutional neural networks. In: International Conference on Machine Learning, pp. 1889–1898. PMLR (2016)

    Google Scholar 

  28. Do, T.T., Cheung, N.M.: Embedding based on function approximation for large scale image search. IEEE Trans. Pattern Anal. Mach. Intell. 40(3), 626–638 (2017)

    Article  Google Scholar 

  29. Doran, G., Lu, S., Mandrake, L., Wagstaff, K.: Mars orbital image (HiRISE) labeled data set version 3 (2019). https://doi.org/10.5281/zenodo.2538136

  30. Downes, L., Steiner, T.J., How, J.P.: Deep learning crater detection for lunar terrain relative navigation. In: AIAA Scitech 2020 Forum (2020). https://doi.org/10.2514/6.2020-1838. https://arc.aiaa.org/doi/abs/10.2514/6.2020-1838

  31. Dunkel, E., et al.: Benchmarking deep learning inference of remote sensing imagery on the qualcomm snapdragon and intel movidius myriad X processors onboard the international space station. In: IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium, pp. 5301–5304 (2022). https://doi.org/10.1109/IGARSS46834.2022.9884906

  32. Ermolov, A., Mirvakhabova, L., Khrulkov, V., Sebe, N., Oseledets, I.: Hyperbolic vision transformers: combining improvements in metric learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7409–7419 (2022)

    Google Scholar 

  33. Esteves, C., Allen-Blanchette, C., Zhou, X., Daniilidis, K.: Polar transformer networks. arXiv preprint arXiv:1709.01889 (2017)

  34. Fu, D., et al.: Unsupervised pre-training for person re-identification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14750–14759 (2021)

    Google Scholar 

  35. Gaskell, R.W., et al.: Characterizing and navigating small bodies with imaging data. Meteorit. Planet. Sci. 43(6) (2008)

    Google Scholar 

  36. Geist, A., et al.: SpaceCube V3. 0 NASA next-generation high-performance processor for science applications. In: Proceedings of the Small Satellite Conference. No. SSC19-XII-02. AIAA/USU (2019)

    Google Scholar 

  37. Geist, A., et al.: NASA spacecube next-generation artificial-intelligence computing for STP-H9-scenic on ISS. In: Proceedings of the Small Satellite Conference. No. SSC23-P1-32, AIAA/USU (2023)

    Google Scholar 

  38. Gentil, C.L., Vayugundla, M., Giubilato, R., Sturzl, W., Vidal-Calleja, T., Triebel, R.: Gaussian process gradient maps for loop-closure detection in unstructured planetary environments. In: 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1895–1902 (2020)

    Google Scholar 

  39. Giubilato, R., Gentil, C.L., Vayugundla, M., Schuster, M.J., Vidal-Calleja, T., Triebel, R.: GPGM-SLAM: a robust slam system for unstructured planetary environments with gaussian process gradient maps. arXiv preprint arXiv:2109.06596 (2021)

  40. Giubilato, R., Sturzl, W., Wedler, A., Triebel, R.: Challenges of slam in extremely unstructured environments: the DLR planetary stereo, solid-state lidar, inertial dataset. IEEE Robot. Autom. Lett. 7, 8721–8728 (2022)

    Article  Google Scholar 

  41. Gong, Y., Huang, L., Chen, L.: Eliminate deviation with deviation for data augmentation and a general multi-modal data learning method. arXiv preprint arXiv:2101.08533 (2021)

  42. Goodwill, J., et al.: NASA spacecube edge TPU smallsat card for autonomous operations and onboard science-data analysis. In: Small Satellite Conference (2021)

    Google Scholar 

  43. Gordo, A., Almazán, J., Revaud, J., Larlus, D.: Deep image retrieval: learning global representations for image search. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016, Part VI. LNCS, vol. 9910, pp. 241–257. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_15

    Chapter  Google Scholar 

  44. Grill, J.B., et al.: Bootstrap your own latent-a new approach to self-supervised learning. Adv. Neural. Inf. Process. Syst. 33, 21271–21284 (2020)

    Google Scholar 

  45. Gu, G., Ko, B., Kim, H.G.: Proxy synthesis: learning with synthetic classes for deep metric learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 1460–1468 (2021)

    Google Scholar 

  46. Guzewich, S.D., et al.: Mars science laboratory observations of the 2018/mars year 34 global dust storm. Geophys. Res. Lett. 46(1), 71–79 (2019). https://doi.org/10.1029/2018GL080839

    Article  Google Scholar 

  47. Habte, S.B., Ibenthal, A., Bekele, E.T., Debelee, T.G.: Convolution filter equivariance/invariance in convolutional neural networks: a survey. In: Girma Debelee, T., Ibenthal, A., Schwenker, F. (eds.) PanAfriCon AI 2022. CCIS, vol. 1800, pp. 191–205. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-31327-1_11

    Chapter  Google Scholar 

  48. Hausler, S., Garg, S., Xu, M., Milford, M., Fischer, T.: Patch-NetVLAD: multi-scale fusion of locally-global descriptors for place recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14141–14152 (2021)

    Google Scholar 

  49. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  50. Henkel, C., Singer, P.: Supporting large-scale image recognition with out-of-domain samples. arXiv preprint arXiv:2010.01650 (2020)

  51. Henriques, J.F., Vedaldi, A.: Warped convolutions: efficient invariance to spatial transformations. In: International Conference on Machine Learning, pp. 1461–1469. PMLR (2017)

    Google Scholar 

  52. Hou, Q., Zhou, D., Feng, J.: Coordinate attention for efficient mobile network design (2021)

    Google Scholar 

  53. Hu, J., Shen, L., Albanie, S., Sun, G., Wu, E.: Squeeze-and-excitation networks (2019)

    Google Scholar 

  54. Hutchinson, M.J., Le Lan, C., Zaidi, S., Dupont, E., Teh, Y.W., Kim, H.: LieTransformer: equivariant self-attention for lie groups. In: International Conference on Machine Learning, pp. 4533–4543. PMLR (2021)

    Google Scholar 

  55. Jiang, R., Mei, S.: Polar coordinate convolutional neural network: from rotation-invariance to translation-invariance. In: 2019 IEEE International Conference on Image Processing (ICIP), pp. 355–359. IEEE (2019)

    Google Scholar 

  56. Johnson, A.E., et al.: The lander vision system for mars 2020 entry descent and landing. In: AAS Guidance Navigation and Control Conference (2017)

    Google Scholar 

  57. Johnson, J., Douze, M., Jégou, H.: Billion-scale similarity search with GPUs. IEEE Trans. Big Data 7(3), 535–547 (2019)

    Article  Google Scholar 

  58. Kang, J., Fernandez-Beltran, R., Wang, Z., Sun, X., Ni, J., Plaza, A.: Rotation-invariant deep embedding for remote sensing images. IEEE Trans. Geosci. Remote Sens. 60, 1–13 (2022). https://doi.org/10.1109/TGRS.2021.3088398

  59. Keetha, N., et al.: AnyLoc: towards universal visual place recognition. IEEE Robot. Autom. Lett. 9, 1286–1293 (2023)

    Article  Google Scholar 

  60. Kha Vu, C.: Deep metric learning: a (long) survey (2021). https://hav4ik.github.io/articles/deep-metric-learning-survey. Accessed 11 Nov 2023

  61. Khosla, P., et al.: Supervised contrastive learning. Adv. Neural. Inf. Process. Syst. 33, 18661–18673 (2020)

    Google Scholar 

  62. Ki, M., Uh, Y., Choe, J., Byun, H.: Contrastive attention maps for self-supervised co-localization. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 2783–2792 (2021). https://doi.org/10.1109/ICCV48922.2021.00280

  63. Kim, S., Kim, D., Cho, M., Kwak, S.: Proxy anchor loss for deep metric learning (2020)

    Google Scholar 

  64. Krause, J., Deng, J., Stark, M., Fei-Fei, L.: Collecting a large-scale dataset of fine-grained cars (2013)

    Google Scholar 

  65. Lauretta, D.S., et al.: Episodes of particle ejection from the surface of the active asteroid (101955) Bennu. Science 366(6470), eaay3544 (2019). https://doi.org/10.1126/science.aay3544. https://www.science.org/doi/abs/10.1126/science.aay3544

  66. Lee, C.: Automated crater detection on mars using deep learning. Planet. Space Sci. 170, 16–28 (2019). https://doi.org/10.1016/j.pss.2019.03.008. https://www.sciencedirect.com/science/article/pii/S0032063318303945

  67. Li, J., Yang, Z., Liu, H., Cai, D.: Deep rotation equivariant network. Neurocomputing 290, 26–33 (2018)

    Article  Google Scholar 

  68. Li, S., Sun, L., Li, Q.: CLIP-ReID: exploiting vision-language model for image re-identification without concrete text labels. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 37, pp. 1405–1413 (2023)

    Google Scholar 

  69. Li, W., Zhou, B., Hsu, C.Y., Li, Y., Ren, F.: Recognizing terrain features on terrestrial surface using a deep learning model: an example with crater detection. In: Proceedings of the 1st Workshop on Artificial Intelligence and Deep Learning for Geographic Knowledge Discovery, GeoAI 2017, pp. 33–36. Association for Computing Machinery, New York (2017). https://doi.org/10.1145/3149808.3149814

  70. Li, X., Larson, M., Hanjalic, A.: Pairwise geometric matching for large-scale object retrieval. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5153–5161 (2015)

    Google Scholar 

  71. Li, Y., Yang, M., Zhang, Z.: A survey of multi-view representation learning. IEEE Trans. Knowl. Data Eng. 31(10), 1863–1883 (2018)

    Article  Google Scholar 

  72. Li, Z., et al.: Rethinking the optimization of average precision: only penalizing negative instances before positive ones is enough. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, pp. 1518–1526 (2022)

    Google Scholar 

  73. Liu, D., Zhao, L., Wang, Y., Kato, J.: Learn from each other to classify better: cross-layer mutual attention learning for fine-grained visual classification. Pattern Recogn. 140, 109550 (2023)

    Article  Google Scholar 

  74. Liu, Y., Guo, Y., Wu, S., Lew, M.S.: DeepIndex for accurate and efficient image retrieval. In: Proceedings of the 5th ACM on International Conference on Multimedia Retrieval, pp. 43–50 (2015)

    Google Scholar 

  75. Mo, H., Zhao, G.: RIC-CNN: rotation-invariant coordinate convolutional neural network. Pattern Recogn. 146, 109994 (2024)

    Article  Google Scholar 

  76. Mohan, D.D., Sankaran, N., Fedorishin, D., Setlur, S., Govindaraju, V.: Moving in the right direction: a regularization for deep metric learning. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 14579–14587 (2020). https://doi.org/10.1109/CVPR42600.2020.01460

  77. Motyka, T.: Learned equivariance in convolutional neural networks (2022)

    Google Scholar 

  78. Muhammad, M.B., Yeasin, M.: Eigen-CAM: class activation map using principal components. In: 2020 International Joint Conference on Neural Networks (IJCNN), pp. 1–7. IEEE (2020)

    Google Scholar 

  79. Musgrave, K., Belongie, S.J., Lim, S.N.: Pytorch metric learning. ArXiv abs/2008.09164 (2020)

    Google Scholar 

  80. National Aeronautics and Space Administration, University of Arizona, Lockheed Martin: Osiris-rex operations timeline. https://www.asteroidmission.org/asteroid-operations/. Accessed 1 June 2023

  81. Norman, C., et al.: Autonomous navigation performance using natural feature tracking during the OSIRIS-Rex touch-and-go sample collection event. Planet. Sci. J. 3(5), 101 (2022)

    Article  MathSciNet  Google Scholar 

  82. Oord, A.v.d., Li, Y., Vinyals, O.: Representation learning with contrastive predictive coding. arXiv preprint arXiv:1807.03748 (2018)

  83. Oquab, M., et al.: DINOv2: learning robust visual features without supervision. arXiv preprint arXiv:2304.07193 (2023)

  84. Ozaki, K., Yokoo, S.: Large-scale landmark retrieval/recognition under a noisy and diverse dataset. arXiv preprint arXiv:1906.04087 (2019)

  85. Radenović, F., Tolias, G., Chum, O.: Fine-tuning CNN image retrieval with no human annotation. IEEE Trans. Pattern Anal. Mach. Intell. 41(7), 1655–1668 (2019). https://doi.org/10.1109/TPAMI.2018.2846566

    Article  Google Scholar 

  86. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection (2016)

    Google Scholar 

  87. Romero, D.W., Lohit, S.: Learning partial equivariances from data. Adv. Neural. Inf. Process. Syst. 35, 36466–36478 (2022)

    Google Scholar 

  88. Salvador, A., Giró-i Nieto, X., Marqués, F., Satoh, S.: Faster R-CNN features for instance search. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 9–16 (2016)

    Google Scholar 

  89. Shabanov, A., Tarasov, A., Nikolenko, S.: STIR: Siamese transformer for image retrieval postprocessing. arXiv preprint arXiv:2304.13393 (2023)

  90. Silburt, A., et al.: Lunar crater identification via deep learning. Icarus 317, 27–38 (2019). https://doi.org/10.1016/j.icarus.2018.06.022. https://www.sciencedirect.com/science/article/pii/S0019103518301386

  91. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  92. Srivastava, S., Sharma, G.: OmniVec: learning robust representations with cross modal sharing. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 1236–1248 (2024)

    Google Scholar 

  93. Sun, S., Zhou, W., Tian, Q., Li, H.: Scalable object retrieval with compact image representation from generic object regions. ACM Trans. Multimedia Comput. Commun. Appl. (TOMM) 12(2), 1–21 (2015)

    Google Scholar 

  94. Sun, Y., et al.: Circle loss: a unified perspective of pair similarity optimization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6398–6407 (2020)

    Google Scholar 

  95. Tan, F., Yuan, J., Ordonez, V.: Instance-level image retrieval using reranking transformers. In: proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 12105–12115 (2021)

    Google Scholar 

  96. Teh, E.W., DeVries, T., Taylor, G.W.: ProxyNCA++: revisiting and revitalizing proxy neighborhood component analysis. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020, Prt XXIV. LNCS, vol. 12369, pp. 448–464. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58586-0_27

    Chapter  Google Scholar 

  97. The Planetary Society: Cost of OSIRIS-Rex. https://www.planetary.org/space-policy/cost-of-osiris-rex. Accessed 1 June 2023

  98. Wang, G., Lai, J., Huang, P., Xie, X.: Spatial-temporal person re-identification. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 8933–8940 (2019)

    Google Scholar 

  99. Wang, Q., Lai, J., Yang, Z., Xu, K., Kan, P., Liu, W., Lei, L.: Improving cross-dimensional weighting pooling with multi-scale feature fusion for image retrieval. Neurocomputing 363, 17–26 (2019)

    Article  Google Scholar 

  100. Wang, X., Han, X., Huang, W., Dong, D., Scott, M.R.: Multi-similarity loss with general pair weighting for deep metric learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5022–5030 (2019)

    Google Scholar 

  101. Wang, Y., Zhang, J., Kan, M., Shan, S., Chen, X.: Self-supervised equivariant attention mechanism for weakly supervised semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12275–12284 (2020)

    Google Scholar 

  102. Wei, X.S.: Fine-grained image analysis with deep learning: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 44(12), 8927–8948 (2021)

    Article  Google Scholar 

  103. Weiler, M., Cesa, G.: General E (2)-equivariant steerable CNNs. Adv. Neural Inf. Process. Syst. 32 (2019)

    Google Scholar 

  104. Welinder, P., et bal.: Caltech-UCSD birds 200. Technical report. CNS-TR-201, Caltech (2010). /se3/wp-content/uploads/2014/09/WelinderEtal10_CUB-200.pdf. http://www.vision.caltech.edu/visipedia/CUB-200.html

  105. Weng, L.: Contrastive representation learning (2021). https://lilianweng.github.io/posts/2021-05-31-contrastive/#parallel-augmentation. Accessed 11 Nov 2023

  106. Weyand, T., Araujo, A., Cao, B., Sim, J.: Google landmarks dataset V2-a large-scale benchmark for instance-level recognition and retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2575–2584 (2020)

    Google Scholar 

  107. Wilson, C., George, A.: CSP hybrid space computing. J. Aerosp. Inf. Syst. 15(4), 215–227 (2018)

    Google Scholar 

  108. Woo, S., Park, J., Lee, J.Y., Kweon, I.S.: CBAM: convolutional block attention module (2018)

    Google Scholar 

  109. Wright, C.A., Eepoel, J.V., Liounis, A.J., Shoemaker, M.A., Deweese, K., Getzandanner, K.M.: Relative terrain imaging navigation (RETINA) tool for the asteroid redirect robotic mission (ARRM). In: AAS Guidance Navigation and Control Conference (2016)

    Google Scholar 

  110. Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K.: Aggregated residual transformations for deep neural networks (2017)

    Google Scholar 

  111. Xu, Q., Wang, J., Jiang, B., Luo, B.: Fine-grained visual classification via internal ensemble learning transformer. IEEE Trans. Multimedia 25, 9015–9028 (2023)

    Article  Google Scholar 

  112. Yang, F., Matei, B., Davis, L.S.: Re-ranking by multi-feature fusion with diffusion for image retrieval. In: 2015 IEEE Winter Conference on Applications of Computer Vision, pp. 572–579. IEEE (2015)

    Google Scholar 

  113. Yang, F., Li, J., Wei, S., Zheng, Q., Liu, T., Zhao, Y.: Two-stream attentive CNNs for image retrieval. In: Proceedings of the 25th ACM International Conference on Multimedia, pp. 1513–1521 (2017)

    Google Scholar 

  114. Yu, T., Wu, Y., Bhattacharjee, S., Yuan, J.: Efficient object instance search using fuzzy objects matching. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 31 (2017)

    Google Scholar 

  115. Zbontar, J., Jing, L., Misra, I., LeCun, Y., Deny, S.: Barlow twins: self-supervised learning via redundancy reduction. In: International Conference on Machine Learning, pp. 12310–12320. PMLR (2021)

    Google Scholar 

  116. Zhang, X., Wang, L., Su, Y.: Visual place recognition: a survey from deep learning perspective. Pattern Recognit. 113, 107760 (2021). https://doi.org/10.1016/j.patcog.2020.107760. https://www.sciencedirect.com/science/article/pii/S003132032030563X

  117. Zheng, L., Shen, L., Tian, L., Wang, S., Wang, J., Tian, Q.: Scalable person re-identification: a benchmark. In: IEEE International Conference on Computer Vision (2015)

    Google Scholar 

  118. Zheng, L., Yang, Y., Tian, Q.: Sift meets CNN: a decade survey of instance retrieval. IEEE Trans. Pattern Anal. Mach. Intell. 40(5), 1224–1244 (2017)

    Article  Google Scholar 

  119. Zheng, L., Zhao, Y., Wang, S., Wang, J., Tian, Q.: Good practice in CNN feature transfer. arXiv preprint arXiv:1604.00133 (2016)

  120. Zhou, W., Li, H., Tian, Q.: Recent advance in content-based image retrieval: a literature survey. arXiv preprint arXiv:1706.06064 (2017)

  121. Zhu, Z., et al.: Viewpoint-aware loss with angular regularization for person re-identification (2019)

    Google Scholar 

  122. Zitnick, C.L., Dollár, P.: Edge boxes: locating object proposals from edges. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, Part V. LNCS, vol. 8693, pp. 391–405. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_26

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy Chase Jr .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 63498 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chase, T., Dantu, K. (2025). MARs: Multi-view Attention Regularizations for Patch-Based Feature Recognition of Space Terrain. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15122. Springer, Cham. https://doi.org/10.1007/978-3-031-73039-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-73039-9_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-73038-2

  • Online ISBN: 978-3-031-73039-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics