Skip to main content

Adaptive Smart Areas: Tailoring Technology for the Development of Intelligent Rural Solutions

  • Conference paper
  • First Online:
Highlights in Practical Applications of Agents, Multi-Agent Systems, and Digital Twins: The PAAMS Collection (PAAMS 2024)

Abstract

This paper addresses the pressing need for technological solutions in rural areas, which face challenges such as geographic dispersion, resource limitations, and the impact of environmental conditions on productivity. These issues, compounded by a depopulation trend, threaten rural regions’ socio-economic stability and sustainable development. Introducing the concept of Adaptive Smart Areas (ASAs), this research proposes a holistic approach to enhance the resilience and adaptability of rural technological ecosystems. ASAs leverage the Internet of Things (IoT), edge computing, and cloud computing to enable efficient resource use, improve production processes, and enhance the quality of life in rural communities by facilitating real-time decision-making and autonomous operation. The paper aims to define ASAs and provide a conceptual framework for an abstract support platform that integrates edge and cloud computing. This framework aims to develop intelligent solutions that address the unique challenges of rural settings, including connectivity issues and geographical dispersion. This research aims to develop technological solutions that are adaptable and within reach, intending to support the ongoing growth and improvement of rural areas. It fosters practical innovation and ensures sustainable and inclusive technological progress in these communities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bermejo, B., Juiz, C.: Improving cloud/edge sustainability through artificial intelligence: a systematic review. J. Parallel Distrib. Comput. 176, 41–54 (2023)

    Article  MATH  Google Scholar 

  2. Billhardt, H., Julián, V., Corchado, J.M., Fernández, A.: An architecture proposal for human-agent societies. In: Highlights of Practical Applications of Heterogeneous Multi-Agent Systems. The PAAMS Collection: PAAMS 2014 International Workshops, Salamanca, Spain, 4–6 June 2014, pp. 344–357. Springer (2014)

    Google Scholar 

  3. Cowie, P., Townsend, L., Salemink, K.: Smart rural futures: will rural areas be left behind in the 4th industrial revolution? J. Rural. Stud. 79, 169–176 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  4. Eli-Chukwu, N.C.: Applications of artificial intelligence in agriculture: a review. Eng. Technol. Appl. Sci. Res. 9(4) (2019)

    Google Scholar 

  5. Huhns, M.N., Stephens, L.M.: Multiagent systems and societies of agents. Multiagent Syst.: Modern Approach Distrib. Artif. Intell. 1, 79–114 (1999)

    MATH  Google Scholar 

  6. Jakobsen, K., Mikalsen, M., Lilleng, G.: A literature review of smart technology domains with implications for research on smart rural communities. Technol. Soc. 102397 (2023)

    Google Scholar 

  7. Javaid, M., Haleem, A., Khan, I.H., Suman, R.: Understanding the potential applications of artificial intelligence in agriculture sector. Adv. Agrochem 2(1), 15–30 (2023)

    Article  MATH  Google Scholar 

  8. Jha, K., Doshi, A., Patel, P., Shah, M.: A comprehensive review on automation in agriculture using artificial intelligence. Artif. Intell. Agric. 2, 1–12 (2019)

    MATH  Google Scholar 

  9. Konečný, J., McMahan, H.B., Yu, F.X., Richtárik, P., Suresh, A.T., Bacon, D.: Federated learning: strategies for improving communication efficiency. CoRR abs/1610.05492 (2016). https://doi.org/10.48550/arXiv.1610.05492

  10. Palanca, J., Rincon, J.A., Carrascosa, C., Julian, V.J., Terrasa, A.: Flexible agent architecture: mixing reactive and deliberative behaviors in spade. Electronics 12(3), 659 (2023)

    Article  Google Scholar 

  11. Palanca, J., Rincon, J.A., Julian, V., Carrascosa, C., Terrasa, A.: IoT artifacts: incorporating artifacts into the spade platform. In: International Symposium on Ambient Intelligence, pp. 69–79. Springer (2021)

    Google Scholar 

  12. Palanca, J., Terrasa, A., Julian, V., Carrascosa, C.: SPADE 3: supporting the new generation of multi-agent systems. IEEE Access 8, 182537–182549 (2020)

    Article  MATH  Google Scholar 

  13. Palanca, J., Terrasa, A., Rodriguez, S., Carrascosa, C., Julian, V.: An agent-based simulation framework for the study of urban delivery. Neurocomputing 423, 679–688 (2021)

    Article  MATH  Google Scholar 

  14. Rincon, J., Julian, V., Carrascosa, C.: FLaMAS: federated learning based on a spade mas. Appl. Sci. 12(7), 3701 (2022)

    Article  MATH  Google Scholar 

  15. Rodríguez, S., et al.: Trends on the development of adaptive virtual organizations. In: Distributed Computing and Artificial Intelligence: 7th International Symposium, pp. 113–121. Springer (2010)

    Google Scholar 

  16. Ryan, M.: The social and ethical impacts of artificial intelligence in agriculture: mapping the agricultural AI literature. AI Soc. 38(6), 2473–2485 (2023)

    Article  MATH  Google Scholar 

  17. Shafto, M., et al.: Draft modeling, simulation, information technology & processing roadmap. Technol. Area 11, 1–32 (2010)

    Google Scholar 

  18. Sharma, V., Tripathi, A.K., Mittal, H.: Technological revolutions in smart farming: current trends, challenges & future directions. Comput. Electron. Agric. 201, 107217 (2022)

    Article  Google Scholar 

  19. Tzachor, A., Devare, M., King, B., Avin, S., Ó hÉigeartaigh, S.: Responsible artificial intelligence in agriculture requires systemic understanding of risks and externalities. Nat. Mach. Intell. 4(2), 104–109 (2022)

    Google Scholar 

  20. Wakchaure, M., Patle, B., Mahindrakar, A.: Application of AI techniques and robotics in agriculture: a review. Artif. Intell. Life Sci. 3, 100057 (2023)

    MATH  Google Scholar 

Download references

Acknowledgements

This work was partially supported with grants PID2021-123673OB-C31, PDC2022-133161-C32 funded by MCIN/AEI/10.13039/501100011033 and by “ERDF A way of making Europe” and “Unión Europea Next GenerationEU/ PRTR”, PROMETEO grant CIPROM/2021/077 from the Conselleria de Innovación, Universidades, Ciencia y Sociedad Digital—Generalitat Valenciana and CitCom.ai TEF (Digital Europe grant no. 101100728).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vicente Julian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Julian, V., Carrascosa, C., Palanca, J., Terrasa, A., Rebollo, M., Giret, A. (2025). Adaptive Smart Areas: Tailoring Technology for the Development of Intelligent Rural Solutions. In: González-Briones, A., et al. Highlights in Practical Applications of Agents, Multi-Agent Systems, and Digital Twins: The PAAMS Collection. PAAMS 2024. Communications in Computer and Information Science, vol 2149. Springer, Cham. https://doi.org/10.1007/978-3-031-73058-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-73058-0_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-73057-3

  • Online ISBN: 978-3-031-73058-0

  • eBook Packages: Artificial Intelligence (R0)

Publish with us

Policies and ethics