Skip to main content

Reinforcement Learning Friendly Vision-Language Model for Minecraft

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Abstract

One of the essential missions in the AI research community is to build an autonomous embodied agent that can achieve high-level performance across a wide spectrum of tasks. However, acquiring or manually designing rewards for all open-ended tasks is unrealistic. In this paper, we propose a novel cross-modal contrastive learning framework architecture, CLIP4MC, aiming to learn a reinforcement learning (RL) friendly vision-language model (VLM) that serves as an intrinsic reward function for open-ended tasks. Simply utilizing the similarity between the video snippet and the language prompt is not RL-friendly since standard VLMs may only capture the similarity at a coarse level. To achieve RL-friendliness, we incorporate the task completion degree into the VLM training objective, as this information can assist agents in distinguishing the importance between different states. Moreover, we provide neat YouTube datasets based on the large-scale YouTube database provided by MineDojo. Specifically, two rounds of filtering operations guarantee that the dataset covers enough essential information and that the video-text pair is highly correlated. Empirically, we demonstrate that the proposed method achieves better performance on RL tasks compared with baselines. The code and datasets are available at https://github.com/PKU-RL/CLIP4MC.

H. Jiang and J. Yue—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bain, M., Nagrani, A., Varol, G., Zisserman, A.: Frozen in time: a joint video and image encoder for end-to-end retrieval. In: IEEE/CVF International Conference on Computer Vision (ICCV) (2021)

    Google Scholar 

  2. Baker, B., et al.: Video pretraining (VPT): learning to act by watching unlabeled online videos. arXiv preprint arXiv:2206.11795 (2022)

  3. Baumli, K., et al.: Vision-language models as a source of rewards. arXiv preprint arXiv:2312.09187 (2023)

  4. Cai, S., Wang, Z., Ma, X., Liu, A., Liang, Y.: Open-world multi-task control through goal-aware representation learning and adaptive horizon prediction. arXiv preprint arXiv:2301.10034 (2023)

  5. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

  6. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. In: International Conference on Learning Representations (ICLR) (2021)

    Google Scholar 

  7. Dzabraev, M., Kalashnikov, M., Komkov, S., Petiushko, A.: MDMMT: multidomain multimodal transformer for video retrieval. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops (2021)

    Google Scholar 

  8. Fan, L., et al.: MineDojo: building open-ended embodied agents with internet-scale knowledge. In: Neural Information Processing Systems (NeurIPS) Datasets and Benchmarks Track (2022)

    Google Scholar 

  9. Guhr, O., Schumann, A.K., Bahrmann, F., Böhme, H.J.: Fullstop: multilingual deep models for punctuation prediction, June 2021. http://ceur-ws.org/Vol-2957/sepp_paper4.pdf

  10. Guss, W.H., et al.: NeurIPS 2019 competition: the MineRL competition on sample efficient reinforcement learning using human priors. arXiv preprint arXiv:1904.10079 (2019)

  11. Guss, W.H., et al.: MineRL: a large-scale dataset of minecraft demonstrations. In: International Joint Conference on Artificial Intelligence (IJCAI) (2019)

    Google Scholar 

  12. Hafner, D., Pasukonis, J., Ba, J., Lillicrap, T.P.: Mastering diverse domains through world models. arXiv preprint arXiv:2301.04104 (2023)

  13. Haiminen, N., Gionis, A., Laasonen, K.: Algorithms for unimodal segmentation with applications to unimodality detection. Knowl. Inf. Syst. 14, 39–57 (2008)

    Article  Google Scholar 

  14. Johnson, M., Hofmann, K., Hutton, T., Bignell, D.: The Malmo platform for artificial intelligence experimentation. In: International Joint Conference on Artificial Intelligence (IJCAI) (2016)

    Google Scholar 

  15. Kaelbling, L.P., Littman, M.L., Cassandra, A.R.: Planning and acting in partially observable stochastic domains. Artif. Intell. 101(1–2), 99–134 (1998)

    Article  MathSciNet  Google Scholar 

  16. Kanervisto, A., et al.: MineRL diamond 2021 competition: overview, results, and lessons learned. arXiv preprint arXiv:2202.10583 (2022)

  17. Li, Y., Wang, H., Duan, Y., Li, X.: Clip surgery for better explainability with enhancement in open-vocabulary tasks. arXiv preprint arXiv:2304.05653 (2023)

  18. Lin, Z., Li, J., Shi, J., Ye, D., Fu, Q., Yang, W.: JueWu-MC: playing minecraft with sample-efficient hierarchical reinforcement learning. arXiv preprint arXiv:2112.04907 (2021)

  19. Liu, S., Fan, H., Qian, S., Chen, Y., Ding, W., Wang, Z.: Hit: hierarchical transformer with momentum contrast for video-text retrieval. In: IEEE/CVF International Conference on Computer Vision (ICCV) (2021)

    Google Scholar 

  20. Luo, H., et al.: CLIP4clip: an empirical study of CLIP for end to end video clip retrieval and captioning. Neurocomputing 508, 293–304 (2022)

    Article  Google Scholar 

  21. Ma, Y.J., et al.: Eureka: Human-level reward design via coding large language models. arXiv preprint arXiv:2310.12931 (2023)

  22. Nottingham, K., et al.: Do embodied agents dream of pixelated sheep?: Embodied decision making using language guided world modelling. arXiv preprint arXiv:2301.12050 (2023)

  23. Oord, A.v.d., Li, Y., Vinyals, O.: Representation learning with contrastive predictive coding. arXiv preprint arXiv:1807.03748 (2018)

  24. OpenAI: GPT-4 technical report (2023)

    Google Scholar 

  25. Radford, A., et al.: Learning transferable visual models from natural language supervision. In: International Conference on Machine Learning, ICML (2021)

    Google Scholar 

  26. Radford, A., Kim, J.W., Xu, T., Brockman, G., McLeavey, C., Sutskever, I.: Robust speech recognition via large-scale weak supervision (2022). https://doi.org/10.48550/ARXIV.2212.04356, https://arxiv.org/abs/2212.04356

  27. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347 (2017)

  28. Shah, R., et al.: Retrospective on the 2021 mineRL BASALT competition on learning from human feedback. In: Neural Information Processing Systems (NeurIPS) Competitions and Demonstrations Track (2021)

    Google Scholar 

  29. Shu, T., Xiong, C., Socher, R.: Hierarchical and interpretable skill acquisition in multi-task reinforcement learning. In: International Conference on Learning Representations (ICLR) (2018)

    Google Scholar 

  30. Tessler, C., Givony, S., Zahavy, T., Mankowitz, D., Mannor, S.: A deep hierarchical approach to lifelong learning in minecraft. In: AAAI Conference on Artificial Intelligence (AAAI) (2017)

    Google Scholar 

  31. Wang, G., et al.: Voyager: an open-ended embodied agent with large language models. arXiv preprint arXiv:2305.16291 (2023)

  32. Xu, H., et al.: Videoclip: contrastive pre-training for zero-shot video-text understanding. arXiv preprint arXiv:2109.14084 (2021)

  33. Yuan, H., et al.: Plan4MC: skill reinforcement learning and planning for open-world minecraft tasks. arXiv preprint arXiv:2303.16563 (2023)

  34. Zhou, C., Loy, C.C., Dai, B.: Extract free dense labels from clip. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13688, pp. 696–712. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19815-1_40

    Chapter  Google Scholar 

  35. Zhu, X., et al.: Ghost in the minecraft: generally capable agents for open-world environments via large language models with text-based knowledge and memory. arXiv preprint arXiv:2305.17144 (2023)

Download references

Acknowledgements

This work was supported by NSFC under grant 62250068. The authors would like to thank the anonymous reviewers for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zongqing Lu .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 804 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jiang, H., Yue, J., Luo, H., Ding, Z., Lu, Z. (2025). Reinforcement Learning Friendly Vision-Language Model for Minecraft. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15126. Springer, Cham. https://doi.org/10.1007/978-3-031-73113-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-73113-6_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-73112-9

  • Online ISBN: 978-3-031-73113-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics