Abstract
Single-photon cameras (SPCs) are emerging as sensors of choice for various challenging imaging applications. One class of SPCs based on the single-photon avalanche diode (SPAD) detects individual photons using an avalanche process; the raw photon data can then be processed to extract scene information under extremely low light, high dynamic range, and rapid motion. Yet, single-photon sensitivity in SPADs comes at a cost—each photon detection consumes more energy than that of a CMOS camera. This avalanche power significantly limits sensor resolution and could restrict widespread adoption of SPAD-based SPCs. We propose a computational-imaging approach called photon inhibition to address this challenge. Photon inhibition strategically allocates detections in space and time based on downstream inference task goals and resource constraints. We develop lightweight, on-sensor computational inhibition policies that use past photon data to disable SPAD pixels in real-time, to select the most informative future photons. As case studies, we design policies tailored for image reconstruction and edge detection, and demonstrate, both via simulations and real SPC captured data, considerable reduction in photon detections (over 90% of photons) while maintaining task performance metrics. Our work raises the question of “which photons should be detected?”, and paves the way for future energy-efficient single-photon imaging. Source code for our experiments is available at https://wisionlab.com/project/inhibition.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
It has been shown, perhaps counter-intuitively, that SPADs do not saturate even under extremely bright conditions [26, 27]. Therefore, SPADs are not restricted to low-flux environments, but are being considered for vision applications across a wide dynamic range of lighting conditions (e.g., from a dark tunnel to bright sunlight).
- 2.
We borrow the term “inhibition” from the phenomenon of “lateral inhibition” found in biological vision systems [3].
- 3.
Sequence \(T' := \{1,1,1,3,3,3,8,8,25\}\) yielded similar results. No extensive search over the policy space was performed.
References
Arbeláez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 33(5), 898–916 (2011). https://doi.org/10.1109/TPAMI.2010.161
Ardelean, A.: Computational Imaging SPAD Cameras. Ph.D. thesis, EPFL (2023). https://doi.org/10.5075/epfl-thesis-9501
Barlow, H.B.: Summation and inhibition in the frog’s retina. J. Physiol. 119(1), 69 (1953)
Bian, L., et al.: High-resolution single-photon imaging with physics-informed deep learning. Nat. Commun. 14(1), 5902 (2023). https://doi.org/10.1038/s41467-023-41597-9
Boso, G., Buttafava, M., Villa, F., Tosi, A.: Low-cost and compact single-photon counter based on a CMOS SPAD smart pixel. IEEE Photonics Technol. Lett. 27(23), 2504–2507 (2015)
Canon Inc.: Canon Launches MS-500 - The World’s First Ultra-High-Sensitivity Interchangeable-Lens SPAD Sensor Camera. https://www.usa.canon.com/newsroom/2023/20230801-ms500, Canon Press Release 8/1/2023. Accessed 25 Feb 2024
Carey, S.J., Lopich, A., Barr, D.R., Wang, B., Dudek, P.: A 100,000 fps vision sensor with embedded 535 GOPS/W 256\(\times \)256 SIMD processor array. In: 2013 Symposium on VLSI Circuits, pp. C182–C183 (2013)
Chan, S.H.: What does a one-bit quanta image sensor offer? IEEE Trans. Comput. Imaging 8, 770–783 (2022). https://doi.org/10.1109/TCI.2022.3202012
Charbon, E., Bruschini, C., Lee, M.J.: 3D-Stacked CMOS SPAD image sensors: technology and applications. In: 2018 25th IEEE International Conference on Electronics, Circuits and Systems (ICECS), pp. 1–4 (2018). https://doi.org/10.1109/ICECS.2018.8617983
Chi, Y., Gnanasambandam, A., Koltun, V., Chan, S.H.: Dynamic low-light imaging with quanta image sensors. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12366, pp. 122–138. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58589-1_8
Della Rocca, F.M., et al.: A 128\(\times \)128 SPAD motion-triggered time-of-flight image sensor with in-pixel histogram and column-parallel vision processor. IEEE J. Solid-State Circ. 55(7), 1762–1775 (2020). https://doi.org/10.1109/JSSC.2020.2993722
Diamond, J.S.: Inhibitory interneurons in the retina: types, circuitry, and function. Ann. Rev. Vis. Sci. 3(1), 1–24 (2017). https://doi.org/10.1146/annurev-vision-102016-061345
Dollar, P., Zitnick, C.L.: Structured forests for fast edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1841–1848 (2013)
Dutton, N.A.W., Al Abbas, T., Gyongy, I., Mattioli Della Rocca, F., Henderson, R.K.: High dynamic range imaging at the quantum limit with single photon avalanche diode-based image sensors. Sensors 18(4), 1166 (2018). https://doi.org/10.3390/s18041166
Fossum, E.R.: Modeling the performance of single-bit and multi-bit quanta image sensors. IEEE J. Electron Devices Soc. 1(9), 166–174 (2013). https://doi.org/10.1109/JEDS.2013.2284054
Franke, K., Berens, P., Schubert, T., Bethge, M., Euler, T., Baden, T.: Inhibition decorrelates visual feature representations in the inner retina. Nature 542(7642), 439–444 (2017). https://doi.org/10.1038/nature21394
Gallego, G., et al.: Event-based vision: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 44(1), 154–180 (2020)
Gnanasambandam, A., Chan, S.H.: HDR imaging with quanta image sensors: theoretical limits and optimal reconstruction. IEEE Trans. Comput. Imaging 6, 1571–1585 (2020). https://doi.org/10.1109/TCI.2020.3041093
Gnanasambandam, A., Chan, S.H.: Exposure-referred signal-to-noise ratio for digital image sensors. IEEE Trans. Comput. Imaging 8, 561–575 (2022). https://doi.org/10.1109/TCI.2022.3187657
Gupta, M., Iso, D., Nayar, S.K.: Fibonacci exposure bracketing for high dynamic range imaging. In: 2013 IEEE International Conference on Computer Vision, pp. 1473–1480. IEEE, Sydney, Australia (2013). https://doi.org/10.1109/ICCV.2013.186
Gyongy, I., Dutton, N.A., Henderson, R.K.: Direct time-of-flight single-photon imaging. IEEE Trans. Electron Devices 69(6), 2794–2805 (2021)
Gyongy, I., et al.: High-speed vision with a 3D-stacked SPAD image sensor. In: Advanced Photon Counting Techniques XV. vol. 11721, p. 1172105. SPIE (2021)
Haldane, J.B.S.: On a method of estimating frequencies. Biometrika 33(3), 222–225 (1945). https://doi.org/10.1093/biomet/33.3.222
Henderson, R.K., et al.: 256 \(\times \) 256 40nm/90nm CMOS 3D-stacked 120 dB dynamic-range reconfigurable time-resolved SPAD imager. In: 2019 IEEE International Solid-State Circuits Conference-(ISSCC), pp. 106–108. IEEE (2019). https://doi.org/10.1109/ISSCC.2019.8662355
Iams, H., Salzberg, B.: The secondary emission phototube. Proc. Inst. Radio Eng. 23(1), 55–64 (1935)
Ingle, A., et al.: Passive inter-photon imaging. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8585–8595 (2021)
Ingle, A., Velten, A., Gupta, M.: High flux passive imaging with single-photon sensors. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6760–6769 (2019)
J Yoshida: Breaking Down iPad Pro 11’s LiDAR Scanner. https://www.eetimes.com/breaking-down-ipad-pro-11s-lidar-scanner/, EE Times 6/5/2020. Accessed 5 Jun 2021
Jocher, G., Chaurasia, A., Qiu, J.: Ultralytics YOLOv8 (2023). https://github.com/ultralytics/ultralytics. Accessed 3 Jun 2024
Koppal, S.J., et al.: Toward wide-angle microvision sensors. IEEE Trans. Pattern Anal. Mach. Intell. 35(12), 2982–2996 (2013). https://doi.org/10.1109/TPAMI.2013.22
Liu, Y., Gutierrez-Barragan, F., Ingle, A., Gupta, M., Velten, A.: Single-photon camera guided extreme dynamic range imaging. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 1575–1585 (2022)
Ma, J., Masoodian, S., Starkey, D.A., Fossum, E.R.: Photon-number-resolving megapixel image sensor at room temperature without avalanche gain. Optica 4(12), 1474–1481 (2017). https://doi.org/10.1364/OPTICA.4.001474
Ma, J., Zhang, D., Elgendy, O.A., Masoodian, S.: A 0.19e- rms read noise 16.7Mpixel stacked quanta image sensor with 1.1 \(M\)m-pitch backside illuminated pixels. IEEE Electron Device Lett. 42(6), 891–894 (2021). https://doi.org/10.1109/LED.2021.3072842
Ma, S., Gupta, S., Ulku, A.C., Bruschini, C., Charbon, E., Gupta, M.: Quanta burst photography. ACM Trans. Graph. 39(4), 79:1–79:16 (2020). https://doi.org/10.1145/3386569.3392470
Ma, S., Mos, P., Charbon, E., Gupta, M.: Burst vision using single-photon cameras. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 5375–5385 (2023)
Medin, S.C., Murray-Bruce, J., Castañón, D., Goyal, V.K.: Beyond binomial and negative binomial: adaptation in Bernoulli parameter estimation. IEEE Trans. Comput. Imaging 5(4), 570–584 (2019). https://doi.org/10.1109/TCI.2019.2913108
Morimoto, K., et al.: 3.2 megapixel 3D-stacked charge focusing SPAD for low-light imaging and depth sensing. In: 2021 IEEE International Electron Devices Meeting (IEDM), pp. 20.2.1–20.2.4 (2021). https://doi.org/10.1109/IEDM19574.2021.9720605
Morimoto, K., et al.: Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7(4), 346–354 (2020). https://doi.org/10.1364/OPTICA.386574
Morimoto, K., Charbon, E.: A scaling law for SPAD pixel miniaturization. Sensors 21(10), 3447 (2021)
Ogi, J., et al.: A 3.06 \(\mu \)m SPAD pixel with embedded metal contact and power grid on deep trench pixel isolation for high-resolution photon-counting. In: 2023 International Image Sensor Workshop (IISW) (2023)
Ogi, J., et al.: A 250fps 124dB dynamic-range SPAD image sensor stacked with pixel-parallel photon counter employing sub-frame extrapolating architecture for motion artifact suppression. In: 2021 IEEE International Solid- State Circuits Conference (ISSCC). vol. 64, pp. 113–115 (2021). https://doi.org/10.1109/ISSCC42613.2021.9365977
Ota, Y., et al.: A 0.37W 143dB-dynamic-range 1Mpixel backside-illuminated charge-focusing SPAD image sensor with pixel-wise exposure control and adaptive clocked recharging. In: 2022 IEEE International Solid- State Circuits Conference (ISSCC). vol. 65, pp. 94–96 (2022). https://doi.org/10.1109/ISSCC42614.2022.9731644
Po, R., Pediredla, A., Gkioulekas, I.: Adaptive gating for single-photon 3D imaging. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16354–16363 (2022)
Severini, F., Cusini, I., Berretta, D., Pasquinelli, K., Incoronato, A., Villa, F.: SPAD pixel with sub-ns dead-time for high-count rate applications. IEEE J. Sel. Top. Quantum Electron. 28(2: Optical Detectors), 1–8 (2021)
Shenzhen CM Technology company Ltd: 16 MP MIPI Camera Module with SONY IMX206 sensor. http://www.camera-module.com/product/mipicameramodule/16mp-mipi-camera-module-sony-imx206-sensor.html (2023)
Sundar, V., Ardelean, A., Swedish, T., Brusschini, C., Charbon, E., Gupta, M.: SoDaCam: software-defined cameras via single-photon imaging. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV) (2023)
Takatsuka, T., et al.: A 3.36 \(\mu \)m-pitch SPAD photon-counting image sensor using clustered multi-cycle clocked recharging technique with intermediate most-significant-bit readout. In: 2023 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits), pp. 1–2 (2023). https://doi.org/10.23919/VLSITechnologyandCir57934.2023.10185241
Tilmon, B., et al.: Energy-efficient adaptive 3D sensing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5054–5063 (2023)
Ulku, A.C., et al.: A 512 \(\times \) 512 SPAD image sensor with integrated gating for widefield FLIM. IEEE J. Sel. Top. Quantum Electron. 25(1), 1–12 (2019). https://doi.org/10.1109/jstqe.2018.2867439
Wang, X.: Laplacian operator-based edge detectors. IEEE Trans. Pattern Anal. Mach. Intell. 29(5), 886–890 (2007)
Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)
Wayne, M.A., Bienfang, J.C., Migdall, A.L.: Low-noise photon counting above 100\(\times \)106 counts per second with a high-efficiency reach-through single-photon avalanche diode system. Appl. Phys. Lett. 118(13), 134002 (2021)
Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of IEEE International Conference on Computer Vision, pp. 1395–1403 (2015)
Xu, Y., Lu, J., Wu, Z.: A compact high-speed active quenching and recharging circuit for SPAD detectors. IEEE Photonics J. 12(5), 1–8 (2020)
Yang, F., Lu, Y.M., Sbaiz, L., Vetterli, M.: Bits from photons: oversampled image acquisition using binary Poisson statistics. IEEE Trans. Image Process. 21(4), 1421–1436 (2011)
Acknowledgments
The authors acknowledge the Minnesota Supercomputing Institute (MSI) at the University of Minnesota for providing resources. A.I. was supported in part by NSF ECCS-2138471. S.G and M.G. were supported in part by NSF CAREER award 1943149, NSF award CNS-2107060, and Wisconsin Alumni Research Foundation (WARF).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Koerner, L.J., Gupta, S., Ingle, A., Gupta, M. (2025). Photon Inhibition for Energy-Efficient Single-Photon Imaging. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15134. Springer, Cham. https://doi.org/10.1007/978-3-031-73116-7_6
Download citation
DOI: https://doi.org/10.1007/978-3-031-73116-7_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-73115-0
Online ISBN: 978-3-031-73116-7
eBook Packages: Computer ScienceComputer Science (R0)