Skip to main content

Image-Conditioned Diffusion Models for Medical Anomaly Detection

  • Conference paper
  • First Online:
Uncertainty for Safe Utilization of Machine Learning in Medical Imaging (UNSURE 2024)

Abstract

Generating pseudo-healthy reconstructions of images is an effective way to detect anomalies, as identifying the differences between the reconstruction and the original can localise arbitrary anomalies whilst also providing interpretability for an observer by displaying what the image ‘should’ look like. All existing reconstruction-based methods have a common shortcoming; they assume that models trained on purely normal data are incapable of reproducing pathologies yet also able to fully maintain healthy tissue. These implicit assumptions often fail, with models either not recovering normal regions or reproducing both the normal and abnormal features. We rectify this issue using image-conditioned diffusion models. Our model takes the input image as conditioning and is explicitly trained to correct synthetic anomalies introduced into healthy images, ensuring that it removes anomalies at test time. This conditioning allows the model to attend to the entire image without any loss of information, enabling it to replicate healthy regions with high fidelity. We evaluate our method across four datasets and define a new state-of-the-art performance for residual-based anomaly detection. Code is available at https://github.com/matt-baugh/img-cond-diffusion-model-ad.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bakas, S., Akbari, H., Sotiras, A., Bilello, M., Rozycki, M., et al.: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci. Data 4(1), 1–13 (2017)

    Article  Google Scholar 

  2. Bakas, S., Reyes, M., Jakab, A., Bauer, S., Rempfler, M., et al.: Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge. arXiv:1811.02629 (2018)

  3. Baugh, M., Tan, J., Müller, J.P., Dombrowski, M., Batten, J., Kainz, B.: Many tasks make light work: learning to localise medical anomalies from multiple synthetic tasks. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention - MICCAI 2023, MICCAI 2023, LNCS, vol. 14220, pp. 162–172. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-43907-0_16

  4. Baugh, M., Tan, J., Vlontzos, A., Müller, J.P., Kainz, B.: nnOOD: a framework for benchmarking self-supervised anomaly localisation methods. In: Sudre, C.H., et al. Uncertainty for Safe Utilization of Machine Learning in Medical Imaging, UNSURE 2022, LNCS, vol. 13563, pp. 103–112. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16749-2_10

  5. Baur, C., Denner, S., Wiestler, B., Navab, N., Albarqouni, S.: Autoencoders for unsupervised anomaly segmentation in brain MR images: a comparative study. Med. Image Anal. 69, 101952 (2021)

    Article  Google Scholar 

  6. Bercea, C.I., Rueckert, D., Schnabel, J.A.: What do AEs Learn? Challenging common assumptions in unsupervised anomaly detection. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention - MICCAI 2023, MICCAI 2023, LNCS, vol. 14224, pp. 304–314. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-43904-9_30

  7. Bercea, C.I., Wiestler, B., Rueckert, D., Schnabel, J.A.: Reversing the abnormal: pseudo-healthy generative networks for anomaly detection. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention - MICCAI 2023, MICCAI 2023, LNCS, vol. 14224, pp. 293–303. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-43904-9_29

  8. Chen, X., You, S., Tezcan, K.C., Konukoglu, E.: Unsupervised lesion detection via image restoration with a normative prior. Med. Image Anal. 64, 101713 (2020)

    Article  Google Scholar 

  9. Defard, T., Setkov, A., Loesch, A., Audigier, R.: PaDiM: a patch distribution modeling framework for anomaly detection and localization. In: Del Bimbo, A., et al. (eds.) ICPR 2021. LNCS, vol. 12664, pp. 475–489. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-68799-1_35

    Chapter  Google Scholar 

  10. Deng, H., Li, X.: Anomaly detection via reverse distillation from one-class embedding. In: CVPR 2022. pp. 9737–9746 (2022)

    Google Scholar 

  11. Ghorbel, A., Aldahdooh, A., Albarqouni, S., Hamidouche, W.: Transformer based models for unsupervised anomaly segmentation in brain MR images. arXiv:2207.02059 (2022)

  12. Graham, M.S., et al.: Unsupervised 3d out-of-distribution detection with latent diffusion models. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention - MICCAI 2023, MICCAI 2023, LNCS, vol. 14220, pp 446–456. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-43907-0_43

  13. Gudovskiy, D., Ishizaka, S., Kozuka, K.: Cflow-ad: real-time unsupervised anomaly detection with localization via conditional normalizing flows. In: WACV, pp. 98–107 (2022)

    Google Scholar 

  14. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. NeurIPS 2020 33, 6840–6851 (2020)

    Google Scholar 

  15. Iqbal, H., Khalid, U., Chen, C., Hua, J.: Unsupervised anomaly detection in medical images using masked diffusion model. In: Cao, X., Xu, X., Rekik, I., Cui, Z., Ouyang, X. (eds.) Machine Learning in Medical Imaging, MLMI 2023, LNCS, vol. 14348, pp. 372–381. Springer, Cham (2024). https://doi.org/10.1007/978-3-031-45673-2_37

  16. Kascenas, A., Pugeault, N., O’Neil, A.Q.: Denoising autoencoders for unsupervised anomaly detection in brain MRI. In: MICCAI 2022, pp. 653–664. PMLR (2022)

    Google Scholar 

  17. Kingma, D.P., Welling, M.: Auto-encoding variational Bayes. In: ICLR 2014 (2014)

    Google Scholar 

  18. Lagogiannis, I., Meissen, F., Kaissis, G., Rueckert, D.: Unsupervised pathology detection: a deep dive into the state of the art. IEEE Trans. Med. Imaging 43(1), 241–252 (2024)

    Article  Google Scholar 

  19. Li, C.L., Sohn, K., Yoon, J., Pfister, T.: CutPaste: self-supervised learning for anomaly detection and localization. In: CVPR 2021, pp. 9664–9674 (2021)

    Google Scholar 

  20. Li, J., et al.: Fast non-markovian diffusion model for weakly supervised anomaly detection in brain MR images. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention - MICCAI 2023, MICCAI 2023, LNCS, vol. 14224, pp. 579–589. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-43904-9_56

  21. Li, T., Gao, Y., Wang, K., Guo, S., Liu, H., Kang, H.: Diagnostic assessment of deep learning algorithms for diabetic retinopathy screening. Inf. Sci. 501, 511–522 (2019)

    Article  Google Scholar 

  22. Liew, S.L., Anglin, J.M., Banks, N.W., Sondag, M., Ito, K.L., et al.: A large, open source dataset of stroke anatomical brain images and manual lesion segmentations. Sci. Data 5(1), 1–11 (2018)

    Article  Google Scholar 

  23. Liu, W., Li, R., Zheng, M., Karanam, S., Wu, Z., et al.: Towards visually explaining variational autoencoders. In: CVPR 2020, pp. 8642–8651 (2020)

    Google Scholar 

  24. Marimont, S.N., Baugh, M., Siomos, V., Tzelepis, C., Kainz, B., Tarroni, G.: Disyre: diffusion-inspired synthetic restoration for unsupervised anomaly detection. arXiv preprint arXiv:2311.15453 (2023)

  25. Meissen, F., Paetzold, J., Kaissis, G., Rueckert, D.: Unsupervised anomaly localization with structural feature-autoencoders. arXiv:2208.10992 (2022)

  26. Meissen, F., Wiestler, B., Kaissis, G., Rueckert, D.: On the pitfalls of using the residual error as anomaly score. In: MIDL 2022, pp. 914–928. PMLR (2022)

    Google Scholar 

  27. Menze, B.H., Jakab, A., Bauer, S., Kalpathy-Cramer, J., Farahani, K., et al.: The multimodal brain tumor image segmentation benchmark (brats). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2015)

    Article  Google Scholar 

  28. Müller, P.J., Baugh, M., Tan, J., Dombrowski, M., Kainz, B.: Confidence-aware and self-supervised image anomaly localisation. In: Sudre, C.H., Baumgartner, C.F., Dalca, A., Mehta, R., Qin, C., Wells, W.M. (eds.) Uncertainty for Safe Utilization of Machine Learning in Medical Imaging, UNSURE 2023, LNCS, vol. 14291, pp. 177–187. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-44336-7_18

  29. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., et al.: Pytorch: an imperative style, high-performance deep learning library. In: NeurIPS 2019, vol. 32 (2019)

    Google Scholar 

  30. Schlegl, T., Seeböck, P., Waldstein, S.M., Langs, G., Schmidt-Erfurth, U.: f-AnoGAN: fast unsupervised anomaly detection with generative adversarial networks. Med. Image Anal. 54, 30–44 (2019)

    Article  Google Scholar 

  31. Silva-Rodríguez, J., Naranjo, V., Dolz, J.: Constrained unsupervised anomaly segmentation. Med. Image Anal. 80, 102526 (2022)

    Article  Google Scholar 

  32. Tan, J., Hou, B., Day, T., Simpson, J., Rueckert, D., Kainz, B.: Detecting outliers with poisson image interpolation. In: MICCAI 2021, pp. 581–591 (2021)

    Google Scholar 

  33. Taylor, J.R., Williams, N., Cusack, R., Auer, T., Shafto, M.A., et al.: The Cambridge Centre for ageing and neuroscience (Cam-CAN) data repository: structural and functional MRI, MEG, and cognitive data from a cross-sectional adult lifespan sample. Neuroimage 144, 262–269 (2017)

    Article  Google Scholar 

  34. Tian, Y. et al.: Unsupervised anomaly detection in medical images with a memory-augmented multi-level cross-attentional masked autoencoder. In: Cao, X., Xu, X., Rekik, I., Cui, Z., Ouyang, X. (eds.) Machine Learning in Medical Imaging, MLMI 2023, LNCS, vol. 14349, pp. 11–21. Springer, Cham (2024). https://doi.org/10.1007/978-3-031-45676-3_2

  35. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  36. Zimmerer, D., Full, P.M., Isensee, F., Jäger, P., Adler, T., et al.: Mood 2020: a public benchmark for out-of-distribution detection and localization on medical images. IEEE Trans. Med. Imaging 41(10), 2728–2738 (2022)

    Article  Google Scholar 

  37. Zimmerer, D., Isensee, F., Petersen, J., Kohl, S., Maier-Hein, K.: Unsupervised anomaly localization using variational auto-encoders. In: Shen, D., et al. Medical Image Computing and Computer Assisted Intervention - MICCAI 2019, MICCAI 2019, LNCS, vol. 11767, pp. 289–297. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32251-9_32

Download references

Acknowledgments

We received support by an EPSRC DTP award (MB), the ERC project MIA-NORMAL 101083647, the State of Bavaria (HTA), and DFG 512819079. HPC resources were provided by NHR@FAU of FAU Erlangen-Nürnberg under the NHR projects b180dc and b143dc. NHR funding is provided by federal and Bavarian state authorities. NHR@FAU hardware is partially funded by DFG - 440719683.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew Baugh .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 137 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Baugh, M. et al. (2025). Image-Conditioned Diffusion Models for Medical Anomaly Detection. In: Sudre, C.H., Mehta, R., Ouyang, C., Qin, C., Rakic, M., Wells, W.M. (eds) Uncertainty for Safe Utilization of Machine Learning in Medical Imaging. UNSURE 2024. Lecture Notes in Computer Science, vol 15167. Springer, Cham. https://doi.org/10.1007/978-3-031-73158-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-73158-7_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-73157-0

  • Online ISBN: 978-3-031-73158-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics