Skip to main content

FISHing in Uncertainty: Synthetic Contrastive Learning for Genetic Aberration Detection

  • Conference paper
  • First Online:
Uncertainty for Safe Utilization of Machine Learning in Medical Imaging (UNSURE 2024)

Abstract

Detecting genetic aberrations is crucial in cancer diagnosis, typically through fluorescence in situ hybridization (FISH). However, existing FISH image classification methods face challenges due to signal variability, the need for costly manual annotations and fail to adequately address the intrinsic uncertainty. We introduce a novel approach that leverages synthetic images to eliminate the requirement for manual annotations and utilizes a joint contrastive and classification objective for training to account for inter-class variation effectively. We demonstrate the superior generalization capabilities and uncertainty calibration of our method, which is trained on synthetic data, by testing it on a manually annotated dataset of real-world FISH images. Our model offers superior calibration in terms of classification accuracy and uncertainty quantification with a classification accuracy of 96.7% among the 50% most certain cases. The presented end-to-end method reduces the demands on personnel and time and improves the diagnostic workflow due to its accuracy and adaptability. All code and data is publicly accessible at: https://github.com/SimonBon/FISHing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Algan, G., Ulusoy, I.: Image classification with deep learning in the presence of noisy labels: a survey. Knowl. Based Syst. 215, 106771 (2021)

    Google Scholar 

  2. Ambros, P.F., et al.: International consensus for neuroblastoma molecular diagnostics: report from the international neuroblastoma risk group (INRG) biology committee. Br. J. Cancer 100(9), 1471–1482 (2009)

    Google Scholar 

  3. Ardeshir, S., Azizan, N.: Uncertainty in contrastive learning: on the predictability of downstream performance (2022)

    Google Scholar 

  4. Bahry, E., et al.: RS-FISH: precise, interactive, fast, and scalable FISH spot detection. bioRxiv pp. 2021.03.09.434205 (2021)

    Google Scholar 

  5. Bouilhol, E., Lefevre, E., Dartigues, B., Brackin, R., Savulescu, A.F., Nikolski, M.: DeepSpot: a deep neural network for RNA spot enhancement in smfish microscopy images (2021)

    Google Scholar 

  6. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations (2020)

    Google Scholar 

  7. Cohn, S.L., et al.: The international neuroblastoma risk group (INRG) classification system: An INRG task force report. J. Clin. Oncol. 27, 289–297 (1 2009)

    Google Scholar 

  8. Ding, Y., Liu, J., Xiong, J., Shi, Y.: Revisiting the evaluation of uncertainty estimation and its application to explore model complexity-uncertainty trade-off. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops 2020-June, pp. 22–31 (2019)

    Google Scholar 

  9. Eichenberger, B.T., Zhan, Y., Rempfler, M., Giorgetti, L., Chao, J.A.: DeepBlink: threshold-independent detection and localization of diffraction-limited spots. Nucleic Acids Res. 49, 7292–7297 (2021)

    Google Scholar 

  10. Gal, Y., Ghahramani, Z.: Dropout as a bayesian approximation: representing model uncertainty in deep learning (6 2015)

    Google Scholar 

  11. Gudla, P.R., Nakayama, K., Pegoraro, G., Misteli, T.: SpotLearn: convolutional neural network for detection of fluorescence in situ hybridization (FISH) signals in high-throughput imaging approaches. Cold Spring Harb. Symp. Quant. Biol. 82, 57–70 (2017)

    Article  Google Scholar 

  12. Gutwein, S., Kampel, M., Sabine, T.M., Licandro, R.: Genuine: genomic and nucleus information embedding for single cell genetic alteration classification in microscopic images. In: Proceedings of the 13th International Conference on Pattern Recognition Applications and Methods (2024)

    Google Scholar 

  13. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2016-December, pp. 770–778 (2015)

    Google Scholar 

  14. Imbert, A., Mueller, F., Walter, T.: PointFISH – learning point cloud representations for RNA localization patterns (2023)

    Google Scholar 

  15. Imbert, A., et al.: Fish-quant v2: a scalable and modular tool for smFISH image analysis. RNA 28, 786–795 (6 2022)

    Google Scholar 

  16. Kirchhof, M., Kasneci, E., Oh, S.J.: Probabilistic contrastive learning recovers the correct aleatoric uncertainty of ambiguous inputs (2023)

    Google Scholar 

  17. Lakshminarayanan, B., Pritzel, A., Blundell, C.: Simple and scalable predictive uncertainty estimation using deep ensembles (2016)

    Google Scholar 

  18. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollar, P.: Focal loss for dense object detection. IEEE Trans. Pattern Anal. Mach. Intell. 42, 318–327 (8 2017)

    Google Scholar 

  19. Linmans, J., van der Laak, J., Litjens, G.: Efficient out-of-distribution detection in digital pathology using multi-head convolutional neural networks (2020)

    Google Scholar 

  20. McInnes, L., Healy, J., Melville, J.: UMAP: uniform manifold approximation and projection for dimension reduction. arXiv:1802.03426 [cs, stat] (2020), comment: Reference implementation available at http://github.com/lmcinnes/umap

  21. Mukhoti, J., Kirsch, A., Amersfoort, J.V., Torr, P.H.S., Gal, Y.: Deep deterministic uncertainty: a new simple baseline (2023)

    Google Scholar 

  22. Penault-Llorca, F., et al.: Emerging technologies for assessing HER2 amplification. Am. J. Clin. Pathol. 132, 539–548 (2009)

    Google Scholar 

  23. Seoni, S., Jahmunah, V., Salvi, M., Barua, P.D., Molinari, F., Acharya, U.R.: Application of uncertainty quantification to artificial intelligence in healthcare: a review of last decade (2013-2023). Comput. Biol. Med. 107441 (2023)

    Google Scholar 

  24. Sohn, K.: Improved deep metric learning with multi-class n-pair loss objective. Adv. Neural Inf. Process. Syst. 29 (2016)

    Google Scholar 

  25. Tang, Z., Wang, L., Tang, G., Medeiros, L.J.: Fluorescence in situ hybridization (FISH) for detecting anaplastic lymphoma kinase (ALK) rearrangement in lung cancer: Clinically relevant technical aspects. Int. j. mol. sci. 20(16), 3939 (2019)

    Google Scholar 

  26. Tinevez, J.Y., et al.: TrackMate: an open and extensible platform for single-particle tracking. Methods 115, 80–90 (2017)

    Google Scholar 

  27. Wei, H., Xie, R., Cheng, H., Feng, L., An, B., Li, Y.: Mitigating neural network overconfidence with logit normalization (2022)

    Google Scholar 

  28. Winkens, J., et al.: Contrastive training for improved out-of-distribution detection (2020)

    Google Scholar 

  29. Wollmann, T., Ritter, C., Dohrke, J.N., Lee, J.Y., Bartenschlager, R., Rohr, K.: DetNet: deep neural network for particle detection in fluorescence microscopy images. In: Proceedings - International Symposium on Biomedical Imaging 2019-April, pp. 517–520 (2019)

    Google Scholar 

  30. Wu, M., Goodman, N.: A simple framework for uncertainty in contrastive learning (2020)

    Google Scholar 

  31. Zakrzewski, F., et al.: Automated detection of the HER2 gene amplification status in fluorescence in situ hybridization images for the diagnostics of cancer tissues. Sci. Rep. 9(1), 8231 (2019)

    Google Scholar 

Download references

Acknowledgments

This research was supported by Vienna Science and Technology Fund (WWTF) PREDICTOME [10.47379/LS20065], EU EUCAIM (No.101100633-EUCAIM) and the Austrian Science Fund (FWF) MAPMET [10.55776/P35841].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Gutwein .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 9897 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gutwein, S., Kampel, M., Taschner-Mandl, S., Licandro, R. (2025). FISHing in Uncertainty: Synthetic Contrastive Learning for Genetic Aberration Detection. In: Sudre, C.H., Mehta, R., Ouyang, C., Qin, C., Rakic, M., Wells, W.M. (eds) Uncertainty for Safe Utilization of Machine Learning in Medical Imaging. UNSURE 2024. Lecture Notes in Computer Science, vol 15167. Springer, Cham. https://doi.org/10.1007/978-3-031-73158-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-73158-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-73157-0

  • Online ISBN: 978-3-031-73158-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics