Abstract
Recently, the growing capabilities of deep generative models have underscored their potential in enhancing image classification accuracy. However, existing methods often demand the generation of a disproportionately large number of images compared to the original dataset, while having only marginal improvements in accuracy. This computationally expensive and time-consuming process hampers the practicality of such approaches. In this paper, we propose to address the efficiency of image generation by focusing on the specific needs and characteristics of the model. With a central tenet of active learning, our method, named ActGen, takes a training-aware approach to image generation. It aims to create images akin to the challenging or misclassified samples encountered by the current model and incorporates these generated images into the training set to augment model performance. ActGen introduces an attentive image guidance technique, using real images as guides during the denoising process of a diffusion model. The model’s attention on class prompt is leveraged to ensure the preservation of similar foreground object while diversifying the background. Furthermore, we introduce a gradient-based generation guidance method, which employs two losses to generate more challenging samples and prevent the generated images from being too similar to previously generated ones. Experimental results on the CIFAR and ImageNet datasets demonstrate that our method achieves better performance with a significantly reduced number of generated images. Code is available at https://github.com/hunto/ActGen.
T. Huang and J. Liu—The authors contributed equally.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Stable diffusion V2 [34] costs about 3 seconds and 16 TMACs to generate a \(512\times 512\) image on a V100 GPU.
- 2.
- 3.
- 4.
References
Azizi, S., Kornblith, S., Saharia, C., Norouzi, M., Fleet, D.J.: Synthetic data from diffusion models improves imagenet classification. arXiv preprint arXiv:2304.08466 (2023)
Bengio, Y., Louradour, J., Collobert, R., Weston, J.: Curriculum learning. In: Proceedings of the 26th Annual International Conference on Machine Learning, pp. 41–48 (2009)
Besnier, V., Jain, H., Bursuc, A., Cord, M., Pérez, P.: This dataset does not exist: training models from generated images. In: ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1–5. IEEE (2020)
Brock, A., Donahue, J., Simonyan, K.: Large scale GAN training for high fidelity natural image synthesis. arXiv preprint arXiv:1809.11096 (2018)
Cao, M., Wang, X., Qi, Z., Shan, Y., Qie, X., Zheng, Y.: Masactrl: tuning-free mutual self-attention control for consistent image synthesis and editing. arXiv preprint arXiv:2304.08465 (2023)
Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13
Chefer, H., Alaluf, Y., Vinker, Y., Wolf, L., Cohen-Or, D.: Attend-and-excite: attention-based semantic guidance for text-to-image diffusion models. ACM Trans. Graph. (TOG) 42(4), 1–10 (2023)
Chen, L.C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 801–818 (2018)
Chen, M., Laina, I., Vedaldi, A.: Training-free layout control with cross-attention guidance. arXiv preprint arXiv:2304.03373 (2023)
Derakhshani, M.M., et al.: Bayesian prompt learning for image-language model generalization. In: ICCV (2023)
Dhariwal, P., Nichol, A.: Diffusion models beat GANs on image synthesis. Adv. Neural. Inf. Process. Syst. 34, 8780–8794 (2021)
Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. In: International Conference on Learning Representations (2020)
Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, vol. 27 (2014)
Guo, T., et al.: On positive-unlabeled classification in GAN. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8385–8393 (2020)
Han, L., Li, Y., Zhang, H., Milanfar, P., Metaxas, D., Yang, F.: Svdiff: compact parameter space for diffusion fine-tuning. arXiv preprint arXiv:2303.11305 (2023)
He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9729–9738 (2020)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
He, R., et al.: Is synthetic data from generative models ready for image recognition? In: International Conference on Learning Representations (2023). https://openreview.net/forum?id=nUmCcZ5RKF
Helber, P., Bischke, B., Dengel, A., Borth, D.: Eurosat: a novel dataset and deep learning benchmark for land use and land cover classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 12(7), 2217–2226 (2019)
Hertz, A., Mokady, R., Tenenbaum, J., Aberman, K., Pritch, Y., Cohen-Or, D.: Prompt-to-prompt image editing with cross attention control. arXiv preprint arXiv:2208.01626 (2022)
Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. Adv. Neural. Inf. Process. Syst. 33, 6840–6851 (2020)
Ho, J., Salimans, T.: Classifier-free diffusion guidance. In: NeurIPS 2021 Workshop on Deep Generative Models and Downstream Applications (2021)
Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4401–4410 (2019)
Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)
Liu, S., Zhang, Y., Li, W., Lin, Z., Jia, J.: Video-P2P: video editing with cross-attention control. arXiv preprint arXiv:2303.04761 (2023)
Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)
Loshchilov, I., Hutter, F.: Online batch selection for faster training of neural networks. arXiv preprint arXiv:1511.06343 (2015)
Nichol, A., et al.: Glide: towards photorealistic image generation and editing with text-guided diffusion models. arXiv preprint arXiv:2112.10741 (2021)
Nichol, A.Q., Dhariwal, P.: Improved denoising diffusion probabilistic models. In: International Conference on Machine Learning, pp. 8162–8171. PMLR (2021)
Parmar, G., Kumar Singh, K., Zhang, R., Li, Y., Lu, J., Zhu, J.Y.: Zero-shot image-to-image translation. In: ACM SIGGRAPH 2023 Conference Proceedings, pp. 1–11 (2023)
Ravuri, S., Vinyals, O.: Seeing is not necessarily believing: limitations of biggans for data augmentation (2019)
Ren, P., et al.: A survey of deep active learning. ACM Comput. Surv. (CSUR) 54(9), 1–40 (2021)
Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, vol. 28 (2015)
Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution image synthesis with latent diffusion models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 10684–10695 (2022)
Saharia, C., et al.: Photorealistic text-to-image diffusion models with deep language understanding. Adv. Neural. Inf. Process. Syst. 35, 36479–36494 (2022)
Schaul, T., Quan, J., Antonoglou, I., Silver, D.: Prioritized experience replay. arXiv preprint arXiv:1511.05952 (2015)
Shi, Z., Zhou, X., Qiu, X., Zhu, X.: Improving image captioning with better use of captions. arXiv preprint arXiv:2006.11807 (2020)
Shipard, J., Wiliem, A., Thanh, K.N., Xiang, W., Fookes, C.: Diversity is definitely needed: improving model-agnostic zero-shot classification via stable diffusion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 769–778 (2023)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)
Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., Ganguli, S.: Deep unsupervised learning using nonequilibrium thermodynamics. In: International Conference on Machine Learning, pp. 2256–2265. PMLR (2015)
Song, H., Kim, M., Kim, S., Lee, J.G.: Carpe diem, seize the samples uncertain “at the moment” for adaptive batch selection. In: Proceedings of the 29th ACM International Conference on Information & Knowledge Management, pp. 1385–1394 (2020)
Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A., Jégou, H.: Training data-efficient image transformers & distillation through attention. In: International Conference on Machine Learning, pp. 10347–10357. PMLR (2021)
Trabucco, B., Doherty, K., Gurinas, M., Salakhutdinov, R.: Effective data augmentation with diffusion models. arXiv preprint arXiv:2302.07944 (2023)
Wu, Z., Xiong, Y., Yu, S.X., Lin, D.: Unsupervised feature learning via non-parametric instance discrimination. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3733–3742 (2018)
Zhang, Y., et al.: Datasetgan: efficient labeled data factory with minimal human effort. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10145–10155 (2021)
Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2881–2890 (2017)
Zhou, Y., Sahak, H., Ba, J.: Training on thin air: improve image classification with generated data. arXiv preprint arXiv:2305.15316 (2023)
Acknowledgements
This work was supported in part by the Australian Research Council under Projects DP210101859 and FT230100549.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Huang, T., Liu, J., You, S., Xu, C. (2025). Active Generation for Image Classification. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15106. Springer, Cham. https://doi.org/10.1007/978-3-031-73195-2_16
Download citation
DOI: https://doi.org/10.1007/978-3-031-73195-2_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-73194-5
Online ISBN: 978-3-031-73195-2
eBook Packages: Computer ScienceComputer Science (R0)