Abstract
High-quality scene reconstruction and novel view synthesis based on Gaussian Splatting (3DGS) typically require steady, high-quality photographs, often impractical to capture with handheld cameras. We present a method that adapts to camera motion and allows high-quality scene reconstruction with handheld video data suffering from motion blur and rolling shutter distortion. Our approach is based on detailed modelling of the physical image formation process and utilizes velocities estimated using visual-inertial odometry (VIO). Camera poses are considered non-static during the exposure time of a single image frame and camera poses are further optimized in the reconstruction process. We formulate a differentiable rendering pipeline that leverages screen space approximation to efficiently incorporate rolling-shutter and motion blur effects into the 3DGS framework. Our results with both synthetic and real data demonstrate superior performance in mitigating camera motion over existing methods, thereby advancing 3DGS in naturalistic settings.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Spectacular AI mapping tools (2024). https://spectacularai.github.io/docs/sdk/tools/nerf.html. Accessed 01 Mar 2024
Cai, J.F., Ji, H., Liu, C., Shen, Z.: Blind motion deblurring from a single image using sparse approximation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 104–111. IEEE (2009)
Chakrabarti, A.: A neural approach to blind motion deblurring. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 221–235. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_14
Community, B.O.: Blender – a 3D modelling and rendering package. Blender Foundation (2018). http://www.blender.org
Dai, P., Zhang, Y., Yu, X., Lyu, X., Qi, X.: Hybrid neural rendering for large-scale scenes with motion blur. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 154–164 (2023)
Fan, B., Dai, Y., Zhang, Z., Liu, Q., He, M.: Context-aware video reconstruction for rolling shutter cameras. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17551–17561 (2022)
Fu, Y., Liu, S., Kulkarni, A., Kautz, J., Efros, A.A., Wang, X.: COLMAP-Free 3D Gaussian splatting. arXiv preprint arXiv:2312.07504 (2023)
Gong, D., et al.: From motion blur to motion flow: a deep learning solution for removing heterogeneous motion blur. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2319–2328 (2017)
Grundmann, M., Kwatra, V., Castro, D., Essa, I.: Calibration-free rolling shutter removal. In: IEEE International Conference on Computational Photography (ICCP), pp. 1–8 (2012)
Hedborg, J., Forsén, P.E., Felsberg, M., Ringaby, E.: Rolling shutter bundle adjustment. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1434–1441 (2012)
Kaipio, J., Somersalo, E.: Statistical and Computational Inverse Problems. Springer, Berlin (2004)
Keetha, N., et al.: SplaTAM: splat, track & map 3D gaussians for dense RGB-D SLAM. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 21357–21366 (2024)
Kerbl, B., Kopanas, G., Leimkühler, T., Drettakis, G.: 3D Gaussian Splatting for real-time radiance field rendering. ACM Trans. Graph. (TOG) 42(4) (2023)
Kim, H., Song, M., Lee, D., Kim, P.: Visual-inertial odometry priors for bundle-adjusting neural radiance fields. In: International Conference on Control, Automation and Systems (ICCAS), pp. 1131–1136 (2022)
Kupyn, O., Budzan, V., Mykhailych, M., Mishkin, D., Matas, J.: DeblurGAN: blind motion deblurring using conditional adversarial networks. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8183–8192 (2018)
Lao, Y., Ait-Aider, O.: A robust method for strong rolling shutter effects correction using lines with automatic feature selection. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4795–4803 (2018)
Lee, B., Lee, H., Sun, X., Ali, U., Park, E.: Deblurring 3D Gaussian Splatting. arXiv preprint arXiv:2401.00834 (2024)
Li, M., Wang, P., Zhao, L., Liao, B., Liu, P.: USB-neRF: unrolling shutter bundle adjusted neural radiance fields. In: International Conference on Learning Representations (ICLR) (2024)
Liang, C.K., Chang, L.W., Chen, H.H.: Analysis and compensation of rolling shutter effect. IEEE Trans. Image Process. 17(8), 1323–1330 (2008)
Liao, B., Qu, D., Xue, Y., Zhang, H., Lao, Y.: Revisiting rolling shutter bundle adjustment: Toward accurate and fast solution. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4863–4871 (2023)
Lin, C.H., Ma, W.C., Torralba, A., Lucey, S.: BARF: bundle-adjusting neural radiance fields. IEEE/CVF International Conference on Computer Vision (ICCV), pp. 5721–5731 (2021)
Liu, P., Cui, Z., Larsson, V., Pollefeys, M.: Deep shutter unrolling network. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5940–5948 (2020)
Lovegrove, S., Patron-Perez, A., Sibley, G.: Spline fusion: a continuous-time representation for visual-inertial fusion with application to rolling shutter cameras. In: Proceedings of the British Machine Vision Conference (BMVC), pp. 93.1–93.11 (2013)
Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60(2), 91–110 (2004)
Ma, L., et al.: Deblur-NeRF: neural radiance fields from blurry images. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 12861–12870 (2022)
Matsuki, H., Murai, R., Kelly, P.H.J., Davison, A.J.: Gaussian splatting SLAM. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 18039–18048 (2024)
Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: NeRF: representing scenes as neural radiance fields for view synthesis. In: European Conference on Computer Vision (ECCV), pp. 405–421 (2020)
Mohan M.R.M., Rajagopalan, A., Seetharaman, G.: Going unconstrained with rolling shutter deblurring. In: IEEE International Conference on Computer Vision (ICCV), pp. 4030–4038 (2017)
Park, K., Henzler, P., Mildenhall, B., Barron, J.T., Martin-Brualla, R.: CamP: camera preconditioning for neural radiance fields. ACM Trans. Graph. (TOG) 42(6), 1–11 (2023)
Rengarajan, V., Rajagopalan, A.N., Aravind, R.: From bows to arrows: rolling shutter rectification of urban scenes. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2773–2781 (2016)
Schölkopf, B., Platt, J., Hofmann, T.: Blind motion deblurring using image statistics. In: Advances in Neural Information Processing Systems, vol. 19, pp. 841–848 (2007)
Schönberger, J.L., Frahm, J.M.: Structure-from-motion revisited. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)
Schubert, D., Demmel, N., von Stumberg, L., Usenko, V., Cremers, D.: Rolling-shutter modelling for visual-inertial odometry. In: International Conference on Intelligent Robots and Systems (IROS) (2019)
Seiskari, O., Rantalankila, P., Kannala, J., Ylilammi, J., Rahtu, E., Solin, A.: HybVIO: pushing the limits of real-time visual-inertial odometry. In: IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), pp. 287–296. IEEE Winter Conference on Applications of Computer Vision, IEEE (2022)
Shan, Q., Jia, J., Agarwala, A.: High-quality motion deblurring from a single image. ACM Trans. Graph. (TOG) 27(3), 1–10 (2008)
Su, S., Heidrich, W.: Rolling shutter motion deblurring. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1529–1537 (2015)
Tai, Y.W., Tan, P., Brown, M.S.: Richardson-Lucy deblurring for scenes under a projective motion path. IEEE Trans. Pattern Anal. Mach. Intell. 33(8), 1603–1618 (2011)
Tancik, M., et al.: Nerfstudio: a modular framework for neural radiance field development. In: ACM SIGGRAPH 2023 Conference Proceedings (2023)
Triggs, B., McLauchlan, P.F., Hartley, R.I., Fitzgibbon, A.W.: Bundle adjustment — a modern synthesis. In: Triggs, B., Zisserman, A., Szeliski, R. (eds.) IWVA 1999. LNCS, vol. 1883, pp. 298–372. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44480-7_21
Vasu, S., Mohan M.R., M., Rajagopalan, A.: Occlusion-aware rolling shutter rectification of 3D scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 636–645 (2018)
Wang, P., Zhao, L., Ma, R., Liu, P.: BAD-NeRF: bundle adjusted deblur neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4170–4179 (2023)
Weber, E., et al.: NeRFiller: completing scenes via generative 3D inpainting. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 20731–20741 (2024)
Wu, R., et al.: ReconFusion: 3D reconstruction with diffusion priors. arXiv preprint arXiv:2312.02981 (2023)
Xie, T., et al.: PhysGaussian: physics-integrated 3D gaussians for generative dynamics. arXiv preprint arXiv:2311.12198 (2023)
Xu, L., Jia, J.: Two-phase kernel estimation for robust motion deblurring. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6311, pp. 157–170. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15549-9_12
Yan, C., et al.: GS-SLAM: dense visual SLAM with 3D gaussian splatting. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 19595–19604 (2024)
Ye, V., Kanazawa, A.: Mathematical supplement for the gsplat library (2023)
Ye, V., Turkulainen, M., the Nerfstudio team: gsplat. https://github.com/nerfstudio-project/gsplat
Ye, Z., Li, W., Liu, S., Qiao, P., Dou, Y.: AbsGS: recovering fine details for 3D gaussian splatting. arXiv preprint arXiv:2404.10484 (2024)
Yu, Z., Chen, A., Huang, B., Sattler, T., Geiger, A.: Mip-splatting: alias-free 3D gaussian splatting. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 19447–19456 (2024)
Zamir, S.W., et al.: Multi-stage progressive image restoration. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 14816–14826 (2021)
Acknowledgements
MT was supported by the Research Council of Finland Flagship programme: Finnish Center for Artificial Intelligence (FCAI). AS acknowledges funding from the Research Council of Finland (grant id 339730). We acknowledge CSC – IT Center for Science, Finland, for computational resources.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Seiskari, O. et al. (2025). Gaussian Splatting on the Move: Blur and Rolling Shutter Compensation for Natural Camera Motion. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15129. Springer, Cham. https://doi.org/10.1007/978-3-031-73209-6_10
Download citation
DOI: https://doi.org/10.1007/978-3-031-73209-6_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-73208-9
Online ISBN: 978-3-031-73209-6
eBook Packages: Computer ScienceComputer Science (R0)