Abstract
Compared to the in-air case, underwater depth estimation has its own challenges. For instance, acquiring high-quality training datasets with groundtruth poses difficulties due to sensor limitations in aquatic environments. Additionally, the physics characteristics of underwater imaging diverge significantly from the in-air case, the methods developed for in-air depth estimation underperform when applied underwater, due to the domain gap. To address these challenges, our paper introduces a novel transfer-learning-based method - Physics-informed Underwater Depth Estimation (PUDE). The key idea is to transfer the knowledge of a pre-trained in-air depth estimation model to underwater settings utilizing a small underwater image set without groundtruth measurement, guided by a physical underwater imaging formation model. We propose novel bound losses based on the physical model to rectify the depth estimations to align with actual underwater physical properties. Finally, in the evaluations across multiple datasets, we compare PUDE model with other existing in-air and underwater methods. The results reveal that the PUDE model excels in both quantitative and qualitative comparisons.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Akkaynak, D., Treibitz, T.: Sea-thru: a method for removing water from underwater images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1682–1691 (2019)
Amitai, S., Klein, I., Treibitz, T.: Self-supervised monocular depth underwater. In: 2023 IEEE International Conference on Robotics and Automation (ICRA), pp. 1098–1104. IEEE (2023)
Ancuti, C.O., Ancuti, C., De Vleeschouwer, C., Neumann, L., Garcia, R.: Color transfer for underwater dehazing and depth estimation. In: 2017 IEEE International Conference on Image Processing (ICIP), pp. 695–699. IEEE (2017)
Berman, D., Levy, D., Avidan, S., Treibitz, T.: Underwater single image color restoration using haze-lines and a new quantitative dataset. IEEE Trans. Pattern Anal. Mach. Intell. (2020)
Bhat, S.F., Alhashim, I., Wonka, P.: AdaBins: depth estimation using adaptive bins. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4009–4018 (2021)
Bhat, S.F., Birkl, R., Wofk, D., Wonka, P., Müller, M.: ZoeDepth: zero-shot transfer by combining relative and metric depth. arXiv preprint arXiv:2302.12288 (2023)
Chang, H.H., Cheng, C.Y., Sung, C.C.: Single underwater image restoration based on depth estimation and transmission compensation. IEEE J. Oceanic Eng. 44(4), 1130–1149 (2018)
Chen, W., Qian, S., Deng, J.: Learning single-image depth from videos using quality assessment networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5604–5613 (2019)
Chiang, J.Y., Chen, Y.C.: Underwater image enhancement by wavelength compensation and dehazing. IEEE Trans. Image Process. 21(4), 1756–1769 (2011)
Drews, P.L., Nascimento, E.R., Botelho, S.S., Campos, M.F.M.: Underwater depth estimation and image restoration based on single images. IEEE Comput. Graph. Appl. 36(2), 24–35 (2016)
Eigen, D., Puhrsch, C., Fergus, R.: Depth map prediction from a single image using a multi-scale deep network. In: Advances in Neural Information Processing Systems, vol. 27 (2014)
Fu, H., Gong, M., Wang, C., Batmanghelich, K., Tao, D.: Deep ordinal regression network for monocular depth estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2002–2011 (2018)
Godard, C., Mac Aodha, O., Brostow, G.J.: Unsupervised monocular depth estimation with left-right consistency. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 270–279 (2017)
Godard, C., Mac Aodha, O., Firman, M., Brostow, G.J.: Digging into self-supervised monocular depth estimation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3828–3838 (2019)
Gupta, H., Mitra, K.: Unsupervised single image underwater depth estimation. In: 2019 IEEE International Conference on Image Processing (ICIP), pp. 624–628. IEEE (2019)
Hambarde, P., Murala, S., Dhall, A.: UW-GAN: single-image depth estimation and image enhancement for underwater images. IEEE Trans. Instrum. Meas. 70, 1–12 (2021)
He, K., Sun, J., Tang, X.: Single image haze removal using dark channel prior. IEEE Trans. Pattern Anal. Mach. Intell. 33(12), 2341–2353 (2010)
Laina, I., Rupprecht, C., Belagiannis, V., Tombari, F., Navab, N.: Deeper depth prediction with fully convolutional residual networks. In: 2016 Fourth International Conference on 3D Vision (3DV), pp. 239–248. IEEE (2016)
Levy, D., et al.: Seathru-NeRF: neural radiance fields in scattering media. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 56–65 (2023)
Li, C., et al.: An underwater image enhancement benchmark dataset and beyond. IEEE Trans. Image Process. 29, 4376–4389 (2019)
Li, Z., Snavely, N.: MegaDepth: learning single-view depth prediction from internet photos. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2041–2050 (2018)
Luo, Y., et al.: Single view stereo matching. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 155–163 (2018)
Ming, Y., Meng, X., Fan, C., Yu, H.: Deep learning for monocular depth estimation: a review. Neurocomputing 438, 14–33 (2021)
Peng, Y.T., Cao, K., Cosman, P.C.: Generalization of the dark channel prior for single image restoration. IEEE Trans. Image Process. 27(6), 2856–2868 (2018)
Peng, Y.T., Cosman, P.C.: Underwater image restoration based on image blurriness and light absorption. IEEE Trans. Image Process. 26(4), 1579–1594 (2017)
Peng, Y.T., Zhao, X., Cosman, P.C.: Single underwater image enhancement using depth estimation based on blurriness. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 4952–4956. IEEE (2015)
Ramamonjisoa, M., Lepetit, V.: SharpNet: fast and accurate recovery of occluding contours in monocular depth estimation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops (2019)
Ranftl, R., Bochkovskiy, A., Koltun, V.: Vision transformers for dense prediction. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 12179–12188 (2021)
Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: mixing datasets for zero-shot cross-dataset transfer. IEEE Trans. Pattern Anal. Mach. Intell. 44(3), 1623–1637 (2020)
Varghese, N., Kumar, A., Rajagopalan, A.: Self-supervised monocular underwater depth recovery, image restoration, and a real-sea video dataset. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 12248–12258 (2023)
Vasiljevic, I., et al.: DIODE: A Dense Indoor and Outdoor DEpth Dataset. CoRR abs/1908.00463 (2019). http://arxiv.org/abs/1908.00463
Wu, C.Y., Wang, J., Hall, M., Neumann, U., Su, S.: Toward practical monocular indoor depth estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3814–3824 (2022)
Wu, Y., Zhou, Y., Chen, S., Ma, Y., Li, Q.: Defect inspection for underwater structures based on line-structured light and binocular vision. Appl. Opt. 60(25), 7754–7764 (2021)
Xian, K., et al.: Monocular relative depth perception with web stereo data supervision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 311–320 (2018)
Yang, J., Gong, M., Nair, G., Lee, J.H., Monty, J., Pu, Y.: Knowledge distillation for feature extraction in underwater VSLAM. arXiv preprint arXiv:2303.17981 (2023)
Ye, X., Zhang, J., Yuan, Y., Xu, R., Wang, Z., Li, H.: Underwater depth estimation via stereo adaptation networks. IEEE Trans. Circuits Syst. Video Technol. (2023)
Yu, B., Wu, J., Islam, M.J.: Udepth: fast monocular depth estimation for visually-guided underwater robots. In: 2023 IEEE International Conference on Robotics and Automation (ICRA), pp. 3116–3123. IEEE (2023)
Acknowledgements
This work received funding from the Australian Research Council via grant DE220101527, and the Australian Government, via grant AUSMURIB000001.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Yang, J., Gong, M., Pu, Y. (2025). Physics-Informed Knowledge Transfer for Underwater Monocular Depth Estimation. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15129. Springer, Cham. https://doi.org/10.1007/978-3-031-73209-6_26
Download citation
DOI: https://doi.org/10.1007/978-3-031-73209-6_26
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-73208-9
Online ISBN: 978-3-031-73209-6
eBook Packages: Computer ScienceComputer Science (R0)