Skip to main content

Physics-Informed Knowledge Transfer for Underwater Monocular Depth Estimation

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15129))

Included in the following conference series:

  • 310 Accesses

Abstract

Compared to the in-air case, underwater depth estimation has its own challenges. For instance, acquiring high-quality training datasets with groundtruth poses difficulties due to sensor limitations in aquatic environments. Additionally, the physics characteristics of underwater imaging diverge significantly from the in-air case, the methods developed for in-air depth estimation underperform when applied underwater, due to the domain gap. To address these challenges, our paper introduces a novel transfer-learning-based method - Physics-informed Underwater Depth Estimation (PUDE). The key idea is to transfer the knowledge of a pre-trained in-air depth estimation model to underwater settings utilizing a small underwater image set without groundtruth measurement, guided by a physical underwater imaging formation model. We propose novel bound losses based on the physical model to rectify the depth estimations to align with actual underwater physical properties. Finally, in the evaluations across multiple datasets, we compare PUDE model with other existing in-air and underwater methods. The results reveal that the PUDE model excels in both quantitative and qualitative comparisons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Akkaynak, D., Treibitz, T.: Sea-thru: a method for removing water from underwater images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1682–1691 (2019)

    Google Scholar 

  2. Amitai, S., Klein, I., Treibitz, T.: Self-supervised monocular depth underwater. In: 2023 IEEE International Conference on Robotics and Automation (ICRA), pp. 1098–1104. IEEE (2023)

    Google Scholar 

  3. Ancuti, C.O., Ancuti, C., De Vleeschouwer, C., Neumann, L., Garcia, R.: Color transfer for underwater dehazing and depth estimation. In: 2017 IEEE International Conference on Image Processing (ICIP), pp. 695–699. IEEE (2017)

    Google Scholar 

  4. Berman, D., Levy, D., Avidan, S., Treibitz, T.: Underwater single image color restoration using haze-lines and a new quantitative dataset. IEEE Trans. Pattern Anal. Mach. Intell. (2020)

    Google Scholar 

  5. Bhat, S.F., Alhashim, I., Wonka, P.: AdaBins: depth estimation using adaptive bins. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4009–4018 (2021)

    Google Scholar 

  6. Bhat, S.F., Birkl, R., Wofk, D., Wonka, P., Müller, M.: ZoeDepth: zero-shot transfer by combining relative and metric depth. arXiv preprint arXiv:2302.12288 (2023)

  7. Chang, H.H., Cheng, C.Y., Sung, C.C.: Single underwater image restoration based on depth estimation and transmission compensation. IEEE J. Oceanic Eng. 44(4), 1130–1149 (2018)

    Article  Google Scholar 

  8. Chen, W., Qian, S., Deng, J.: Learning single-image depth from videos using quality assessment networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5604–5613 (2019)

    Google Scholar 

  9. Chiang, J.Y., Chen, Y.C.: Underwater image enhancement by wavelength compensation and dehazing. IEEE Trans. Image Process. 21(4), 1756–1769 (2011)

    Article  MathSciNet  Google Scholar 

  10. Drews, P.L., Nascimento, E.R., Botelho, S.S., Campos, M.F.M.: Underwater depth estimation and image restoration based on single images. IEEE Comput. Graph. Appl. 36(2), 24–35 (2016)

    Article  Google Scholar 

  11. Eigen, D., Puhrsch, C., Fergus, R.: Depth map prediction from a single image using a multi-scale deep network. In: Advances in Neural Information Processing Systems, vol. 27 (2014)

    Google Scholar 

  12. Fu, H., Gong, M., Wang, C., Batmanghelich, K., Tao, D.: Deep ordinal regression network for monocular depth estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2002–2011 (2018)

    Google Scholar 

  13. Godard, C., Mac Aodha, O., Brostow, G.J.: Unsupervised monocular depth estimation with left-right consistency. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 270–279 (2017)

    Google Scholar 

  14. Godard, C., Mac Aodha, O., Firman, M., Brostow, G.J.: Digging into self-supervised monocular depth estimation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3828–3838 (2019)

    Google Scholar 

  15. Gupta, H., Mitra, K.: Unsupervised single image underwater depth estimation. In: 2019 IEEE International Conference on Image Processing (ICIP), pp. 624–628. IEEE (2019)

    Google Scholar 

  16. Hambarde, P., Murala, S., Dhall, A.: UW-GAN: single-image depth estimation and image enhancement for underwater images. IEEE Trans. Instrum. Meas. 70, 1–12 (2021)

    Article  Google Scholar 

  17. He, K., Sun, J., Tang, X.: Single image haze removal using dark channel prior. IEEE Trans. Pattern Anal. Mach. Intell. 33(12), 2341–2353 (2010)

    Google Scholar 

  18. Laina, I., Rupprecht, C., Belagiannis, V., Tombari, F., Navab, N.: Deeper depth prediction with fully convolutional residual networks. In: 2016 Fourth International Conference on 3D Vision (3DV), pp. 239–248. IEEE (2016)

    Google Scholar 

  19. Levy, D., et al.: Seathru-NeRF: neural radiance fields in scattering media. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 56–65 (2023)

    Google Scholar 

  20. Li, C., et al.: An underwater image enhancement benchmark dataset and beyond. IEEE Trans. Image Process. 29, 4376–4389 (2019)

    Article  Google Scholar 

  21. Li, Z., Snavely, N.: MegaDepth: learning single-view depth prediction from internet photos. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2041–2050 (2018)

    Google Scholar 

  22. Luo, Y., et al.: Single view stereo matching. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 155–163 (2018)

    Google Scholar 

  23. Ming, Y., Meng, X., Fan, C., Yu, H.: Deep learning for monocular depth estimation: a review. Neurocomputing 438, 14–33 (2021)

    Article  Google Scholar 

  24. Peng, Y.T., Cao, K., Cosman, P.C.: Generalization of the dark channel prior for single image restoration. IEEE Trans. Image Process. 27(6), 2856–2868 (2018)

    Article  MathSciNet  Google Scholar 

  25. Peng, Y.T., Cosman, P.C.: Underwater image restoration based on image blurriness and light absorption. IEEE Trans. Image Process. 26(4), 1579–1594 (2017)

    Article  MathSciNet  Google Scholar 

  26. Peng, Y.T., Zhao, X., Cosman, P.C.: Single underwater image enhancement using depth estimation based on blurriness. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 4952–4956. IEEE (2015)

    Google Scholar 

  27. Ramamonjisoa, M., Lepetit, V.: SharpNet: fast and accurate recovery of occluding contours in monocular depth estimation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops (2019)

    Google Scholar 

  28. Ranftl, R., Bochkovskiy, A., Koltun, V.: Vision transformers for dense prediction. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 12179–12188 (2021)

    Google Scholar 

  29. Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: mixing datasets for zero-shot cross-dataset transfer. IEEE Trans. Pattern Anal. Mach. Intell. 44(3), 1623–1637 (2020)

    Article  Google Scholar 

  30. Varghese, N., Kumar, A., Rajagopalan, A.: Self-supervised monocular underwater depth recovery, image restoration, and a real-sea video dataset. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 12248–12258 (2023)

    Google Scholar 

  31. Vasiljevic, I., et al.: DIODE: A Dense Indoor and Outdoor DEpth Dataset. CoRR abs/1908.00463 (2019). http://arxiv.org/abs/1908.00463

  32. Wu, C.Y., Wang, J., Hall, M., Neumann, U., Su, S.: Toward practical monocular indoor depth estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3814–3824 (2022)

    Google Scholar 

  33. Wu, Y., Zhou, Y., Chen, S., Ma, Y., Li, Q.: Defect inspection for underwater structures based on line-structured light and binocular vision. Appl. Opt. 60(25), 7754–7764 (2021)

    Article  Google Scholar 

  34. Xian, K., et al.: Monocular relative depth perception with web stereo data supervision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 311–320 (2018)

    Google Scholar 

  35. Yang, J., Gong, M., Nair, G., Lee, J.H., Monty, J., Pu, Y.: Knowledge distillation for feature extraction in underwater VSLAM. arXiv preprint arXiv:2303.17981 (2023)

  36. Ye, X., Zhang, J., Yuan, Y., Xu, R., Wang, Z., Li, H.: Underwater depth estimation via stereo adaptation networks. IEEE Trans. Circuits Syst. Video Technol. (2023)

    Google Scholar 

  37. Yu, B., Wu, J., Islam, M.J.: Udepth: fast monocular depth estimation for visually-guided underwater robots. In: 2023 IEEE International Conference on Robotics and Automation (ICRA), pp. 3116–3123. IEEE (2023)

    Google Scholar 

Download references

Acknowledgements

This work received funding from the Australian Research Council via grant DE220101527, and the Australian Government, via grant AUSMURIB000001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinghe Yang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 15823 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, J., Gong, M., Pu, Y. (2025). Physics-Informed Knowledge Transfer for Underwater Monocular Depth Estimation. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15129. Springer, Cham. https://doi.org/10.1007/978-3-031-73209-6_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-73209-6_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-73208-9

  • Online ISBN: 978-3-031-73209-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics