Skip to main content

Learning Neural Deformation Representation for 4D Dynamic Shape Generation

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Abstract

Recent developments in 3D shape representation opened new possibilities for generating detailed 3D shapes. Despite these advances, there are few studies dealing with the generation of 4D dynamic shapes that have the form of 3D objects deforming over time. To bridge this gap, we focus on generating 4D dynamic shapes with an emphasis on both generation quality and efficiency in this paper. HyperDiffusion, a previous work on 4D generation, proposed a method of directly generating the weight parameters of 4D occupancy fields but suffered from low temporal consistency and slow rendering speed due to motion representation that is not separated from the shape representation of 4D occupancy fields. Therefore, we propose a new neural deformation representation and combine it with conditional neural signed distance fields to design a 4D representation architecture in which the motion latent space is disentangled from the shape latent space. The proposed deformation representation, which works by predicting skinning weights and rigid transformations for multiple parts, also has advantages over the deformation modules of existing 4D representations in understanding the structure of shapes. In addition, we design a training process of a diffusion model that utilizes the shape and motion features that are extracted by our 4D representation as data points. The results of unconditional generation, conditional generation, and motion retargeting experiments demonstrate that our method not only shows better performance than previous works in 4D dynamic shape generation but also has various potential applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Achlioptas, P., Diamanti, O., Mitliagkas, I., Guibas, L.: Learning representations and generative models for 3D point clouds. In: Dy, J., Krause, A. (eds.) Proceedings of the 35th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 80, pp. 40–49. PMLR (2018). https://proceedings.mlr.press/v80/achlioptas18a.html

  2. Bogo, F., Romero, J., Pons-Moll, G., Black, M.J.: Dynamic FAUST: registering human bodies in motion. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

    Google Scholar 

  3. Chan, E.R., Monteiro, M., Kellnhofer, P., Wu, J., Wetzstein, G.: Pi-GAN: periodic implicit generative adversarial networks for 3D-aware image synthesis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5799–5809 (2021)

    Google Scholar 

  4. Chen, R.T.Q., Rubanova, Y., Bettencourt, J., Duvenaud, D.K.: Neural ordinary differential equations. In: Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 31. Curran Associates, Inc. (2018). https://proceedings.neurips.cc/paper_files/paper/2018/file/69386f6bb1dfed68692a24c8686939b9-Paper.pdf

  5. Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078 (2014)

  6. Chou, G., Bahat, Y., Heide, F.: Diffusion-SDF: conditional generative modeling of signed distance functions. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 2262–2272 (2023)

    Google Scholar 

  7. Dupont, E., Kim, H., Eslami, S.M.A., Rezende, D.J., Rosenbaum, D.: From data to functa: your data point is a function and you can treat it like one. In: Chaudhuri, K., Jegelka, S., Song, L., Szepesvari, C., Niu, G., Sabato, S. (eds.) Proceedings of the 39th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 162, pp. 5694–5725. PMLR (2022). https://proceedings.mlr.press/v162/dupont22a.html

  8. Erkoç, Z., Ma, F., Shan, Q., Nießner, M., Dai, A.: HyperDiffusion: generating implicit neural fields with weight-space diffusion. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14300–14310 (2023)

    Google Scholar 

  9. Fan, H., Su, H., Guibas, L.J.: A point set generation network for 3D object reconstruction from a single image. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

    Google Scholar 

  10. Gao, J., et al.: GET3D: a generative model of high quality 3D textured shapes learned from images. In: Koyejo, S., Mohamed, S., Agarwal, A., Belgrave, D., Cho, K., Oh, A. (eds.) Advances in Neural Information Processing Systems, vol. 35, pp. 31841–31854. Curran Associates, Inc. (2022). https://proceedings.neurips.cc/paper_files/paper/2022/file/cebbd24f1e50bcb63d015611fe0fe767-Paper-Conference.pdf

  11. Goodfellow, I., et al.: Generative adversarial nets. In: Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N., Weinberger, K. (eds.) Advances in Neural Information Processing Systems, vol. 27. Curran Associates, Inc. (2014). https://proceedings.neurips.cc/paper_files/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf

  12. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., Lin, H. (eds.) Advances in Neural Information Processing Systems, vol. 33, pp. 6840–6851. Curran Associates, Inc. (2020). https://proceedings.neurips.cc/paper_files/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf

  13. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. In: Advances in Neural Information Processing Systems, vol. 33, pp. 6840–6851 (2020)

    Google Scholar 

  14. Hui, K.H., Li, R., Hu, J., Fu, C.W.: Neural wavelet-domain diffusion for 3D shape generation. In: SIGGRAPH Asia 2022 Conference Papers, pp. 1–9 (2022)

    Google Scholar 

  15. Jiang, B., Zhang, Y., Wei, X., Xue, X., Fu, Y.: Learning compositional representation for 4D captures with neural ODE. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5340–5350 (2021)

    Google Scholar 

  16. Jiang, B., Zhang, Y., Wei, X., Xue, X., Fu, Y.: H4D: human 4D modeling by learning neural compositional representation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 19355–19365 (2022)

    Google Scholar 

  17. Kavan, L.: Direct skinning methods and deformation primitives. ACM SIGGRAPH Courses 4 (2014)

    Google Scholar 

  18. Kavan, L., Collins, S., Žára, J., O’Sullivan, C.: Geometric skinning with approximate dual quaternion blending. ACM Trans. Graph. 27(4), 1–23 (2008). https://doi.org/10.1145/1409625.1409627

    Article  Google Scholar 

  19. Kerbl, B., Kopanas, G., Leimkühler, T., Drettakis, G.: 3D Gaussian splatting for real-time radiance field rendering. ACM Trans. Graph. 42(4), 1–14 (2023)

    Article  Google Scholar 

  20. Kleineberg, M., Fey, M., Weichert, F.: Adversarial generation of continuous implicit shape representations. arXiv preprint arXiv:2002.00349 (2020)

  21. Lei, J., Daniilidis, K.: CaDeX: learning canonical deformation coordinate space for dynamic surface representation via neural homeomorphism. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6624–6634 (2022)

    Google Scholar 

  22. Li, T., Bolkart, T., Black, M.J., Li, H., Romero, J.: Learning a model of facial shape and expression from 4D scans. ACM Trans. Graph. 36(6), 194-1 (2017)

    Google Scholar 

  23. Li, Y., Takehara, H., Taketomi, T., Zheng, B., Nießner, M.: 4DComplete: non-rigid motion estimation beyond the observable surface. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 12706–12716 (2021)

    Google Scholar 

  24. Loper, M., Mahmood, N., Romero, J., Pons-Moll, G., Black, M.J.: SMPL: a skinned multi-person linear model. ACM Trans. Graph. 34(6), 1–16 (2015). https://doi.org/10.1145/2816795.2818013

    Article  Google Scholar 

  25. Lorensen, W.E., Cline, H.E.: Marching cubes: a high resolution 3D surface construction algorithm. In: Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 1987, pp. 163–169. Association for Computing Machinery, New York (1987). https://doi.org/10.1145/37401.37422

  26. Luo, S., Hu, W.: Diffusion probabilistic models for 3D point cloud generation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2837–2845 (2021)

    Google Scholar 

  27. Ma, Q., et al.: Learning to dress 3D people in generative clothing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2020)

    Google Scholar 

  28. Mehta, I., Gharbi, M., Barnes, C., Shechtman, E., Ramamoorthi, R., Chandraker, M.: Modulated periodic activations for generalizable local functional representations. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14214–14223 (2021)

    Google Scholar 

  29. Mescheder, L., Oechsle, M., Niemeyer, M., Nowozin, S., Geiger, A.: Occupancy networks: learning 3D reconstruction in function space. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  30. Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: NeRF: representing scenes as neural radiance fields for view synthesis. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 405–421. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_24

    Chapter  Google Scholar 

  31. Niemeyer, M., Mescheder, L., Oechsle, M., Geiger, A.: Occupancy flow: 4D reconstruction by learning particle dynamics. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) (2019)

    Google Scholar 

  32. Park, J.J., Florence, P., Straub, J., Newcombe, R., Lovegrove, S.: DeepSDF: learning continuous signed distance functions for shape representation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  33. Peng, S., Niemeyer, M., Mescheder, L., Pollefeys, M., Geiger, A.: Convolutional occupancy networks. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020, Part III. LNCS, vol. 12348, pp. 523–540. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58580-8_31

    Chapter  Google Scholar 

  34. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: PointNet: deep learning on point sets for 3D classification and segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

    Google Scholar 

  35. Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., Chen, M.: Hierarchical text-conditional image generation with CLIP latents 1(2), 3. arXiv preprint arXiv:2204.06125 (2022)

  36. Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution image synthesis with latent diffusion models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 10684–10695 (2022)

    Google Scholar 

  37. Romero, J., Tzionas, D., Black, M.J.: Embodied hands: modeling and capturing hands and bodies together. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 36(6), 1–17 (2017)

    Google Scholar 

  38. Shu, D.W., Park, S.W., Kwon, J.: 3D point cloud generative adversarial network based on tree structured graph convolutions. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) (2019)

    Google Scholar 

  39. Song, J., Meng, C., Ermon, S.: Denoising diffusion implicit models. arXiv preprint arXiv:2010.02502 (2020)

  40. Tang, J., Xu, D., Jia, K., Zhang, L.: Learning parallel dense correspondence from spatio-temporal descriptors for efficient and robust 4D reconstruction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6022–6031 (2021)

    Google Scholar 

  41. Valsesia, D., Fracastoro, G., Magli, E.: Learning localized generative models for 3D point clouds via graph convolution. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=SJeXSo09FQ

  42. Yang, G., Huang, X., Hao, Z., Liu, M.Y., Belongie, S., Hariharan, B.: PointFlow: 3D point cloud generation with continuous normalizing flows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) (2019)

    Google Scholar 

  43. Zeng, X., et al.: LION: latent point diffusion models for 3D shape generation. In: Advances in Neural Information Processing Systems (2022)

    Google Scholar 

Download references

Acknowledgments

This research was supported by a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (grant number: HI22C1496).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gyojin Han .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (zip 15981 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Han, G., Hur, J., Choi, J., Kim, J. (2025). Learning Neural Deformation Representation for 4D Dynamic Shape Generation. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15130. Springer, Cham. https://doi.org/10.1007/978-3-031-73220-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-73220-1_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-73219-5

  • Online ISBN: 978-3-031-73220-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics