Skip to main content

Decomposition of Neural Discrete Representations for Large-Scale 3D Mapping

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Abstract

Learning efficient representations of local features is a key challenge in feature volume-based 3D neural mapping, especially in large-scale environments. In this paper, we introduce Decomposition-based Neural Mapping (DNMap), a storage-efficient large-scale 3D mapping method that employs a discrete representation based on a decomposition strategy. This decomposition strategy aims to efficiently capture repetitive and representative patterns of shapes by decomposing each discrete embedding into component vectors that are shared across the embedding space. Our DNMap optimizes a set of component vectors, rather than entire discrete embeddings, and learns composition rather than indexing the discrete embeddings. Furthermore, to complement the mapping quality, we additionally learn low-resolution continuous embeddings that require tiny storage space. By combining these representations with a shallow neural network and an efficient octree-based feature volume, our DNMap successfully approximates signed distance functions and compresses the feature volume while preserving mapping quality. Our source code is available at https://github.com/minseong-p/dnmap.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Azinović, D., Martin-Brualla, R., Goldman, D.B., Nießner, M., Thies, J.: Neural RGB-D surface reconstruction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6290–6301 (2022)

    Google Scholar 

  2. Bengio, Y., Léonard, N., Courville, A.: Estimating or propagating gradients through stochastic neurons for conditional computation (2013)

    Google Scholar 

  3. Deng, J., et al.: NeRF-LOAM: neural implicit representation for large-scale incremental lidar odometry and mapping. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 8218–8227 (2023)

    Google Scholar 

  4. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? The KITTI vision benchmark suite. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 3354–3361 (2012). https://doi.org/10.1109/CVPR.2012.6248074

  5. Gropp, A., Yariv, L., Haim, N., Atzmon, M., Lipman, Y.: Implicit geometric regularization for learning shapes. In: III, H.D., Singh, A. (eds.) Proceedings of the 37th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 119, pp. 3789–3799. PMLR (2020). https://proceedings.mlr.press/v119/gropp20a.html

  6. Isaacson, S., Kung, P.C., Ramanagopal, M., Vasudevan, R., Skinner, K.A.: LONER: LiDAR only neural representations for real-time slam. IEEE Robot. Autom. Lett. 8(12), 8042–8049 (2023). https://doi.org/10.1109/LRA.2023.3324521

    Article  Google Scholar 

  7. Jang, E., Gu, S., Poole, B.: Categorical reparameterization with Gumbel-softmax. arXiv preprint arXiv:1611.01144 (2016)

  8. Johari, M.M., Carta, C., Fleuret, F.: ESLAM: efficient dense slam system based on hybrid representation of signed distance fields. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17408–17419 (2023)

    Google Scholar 

  9. Kwon, Y., Sung, M., Yoon, S.: Implicit LiDAR network: LiDAR super-resolution via interpolation weight prediction. In: 2022 International Conference on Robotics and Automation (ICRA), pp. 8424–8430 (2022). https://doi.org/10.1109/ICRA46639.2022.9811992

  10. Kühner, T., Kümmerle, J.: Large-scale volumetric scene reconstruction using LiDAR. In: 2020 IEEE International Conference on Robotics and Automation (ICRA), pp. 6261–6267 (2020). https://doi.org/10.1109/ICRA40945.2020.9197388

  11. Li, P., Shi, Y., Liu, T., Zhao, H., Zhou, G., Zhang, Y.Q.: Semi-supervised implicit scene completion from sparse LiDAR (2021)

    Google Scholar 

  12. Liu, L., Gu, J., Zaw Lin, K., Chua, T.S., Theobalt, C.: Neural sparse voxel fields. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., Lin, H. (eds.) Advances in Neural Information Processing Systems, vol. 33, pp. 15651–15663. Curran Associates, Inc. (2020). https://proceedings.neurips.cc/paper_files/paper/2020/file/b4b758962f17808746e9bb832a6fa4b8-Paper.pdf

  13. Lorensen, W.E., Cline, H.E.: Marching cubes: a high resolution 3D surface construction algorithm. SIGGRAPH Comput. Graph. 21(4), 163–169 (1987). https://doi.org/10.1145/37402.37422

    Article  Google Scholar 

  14. Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: NeRF: representing scenes as neural radiance fields for view synthesis. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 405–421. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_24

    Chapter  Google Scholar 

  15. Müller, T., Evans, A., Schied, C., Keller, A.: Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans. Graph. 41(4), 102:1–102:15 (2022). https://doi.org/10.1145/3528223.3530127

  16. Newcombe, R.A., et al.: KinectFusion: real-time dense surface mapping and tracking. In: 2011 10th IEEE International Symposium on Mixed and Augmented Reality, pp. 127–136 (2011). https://doi.org/10.1109/ISMAR.2011.6092378

  17. van den Oord, A., Vinyals, O., kavukcuoglu, K.: Neural discrete representation learning. In: Guyon, I., et al. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/7a98af17e63a0ac09ce2e96d03992fbc-Paper.pdf

  18. Ortiz, J., Clegg, A., Dong, J., Sucar, E., Novotny, D., Zollhoefer, M., Mukadam, M.: iSDF: real-time neural signed distance fields for robot perception (2022)

    Google Scholar 

  19. Pan, Y., Kompis, Y., Bartolomei, L., Mascaro, R., Stachniss, C., Chli, M.: VoxField: non-projective signed distance fields for online planning and 3D reconstruction. In: 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5331–5338 (2022). https://doi.org/10.1109/IROS47612.2022.9981318

  20. Park, J.J., Florence, P., Straub, J., Newcombe, R., Lovegrove, S.: DeepSDF: learning continuous signed distance functions for shape representation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  21. Park, M., Son, H., Kim, E.: Implicit point function for lidar super-resolution in autonomous driving. IEEE Robot. Autom. Lett. 8(11), 7003–7009 (2023). https://doi.org/10.1109/LRA.2023.3313925

    Article  Google Scholar 

  22. Peng, S., Niemeyer, M., Mescheder, L., Pollefeys, M., Geiger, A.: Convolutional occupancy networks. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12348, pp. 523–540. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58580-8_31

    Chapter  Google Scholar 

  23. Ramezani, M., Wang, Y., Camurri, M., Wisth, D., Mattamala, M., Fallon, M.: The newer college dataset: handheld LiDAR, inertial and vision with ground truth. In: 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4353–4360 (2020). https://doi.org/10.1109/IROS45743.2020.9340849

  24. Rist, C.B., Emmerichs, D., Enzweiler, M., Gavrila, D.M.: Semantic scene completion using local deep implicit functions on lidar data. IEEE Trans. Pattern Anal. Mach. Intell. 44(10), 7205–7218 (2022). https://doi.org/10.1109/TPAMI.2021.3095302

    Article  Google Scholar 

  25. Shi, C., Tang, F., Wu, Y., Jin, X., Ma, G.: Accurate implicit neural mapping with more compact representation in large-scale scenes using ranging data. IEEE Robot. Autom. Lett. 8(10), 6683–6690 (2023). https://doi.org/10.1109/LRA.2023.3311355

    Article  Google Scholar 

  26. Sucar, E., Liu, S., Ortiz, J., Davison, A.J.: iMAP: implicit mapping and positioning in real-time. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6229–6238 (2021)

    Google Scholar 

  27. Takikawa, T., et al.: Variable bitrate neural fields. In: ACM SIGGRAPH 2022 Conference Proceedings. SIGGRAPH 2022, Association for Computing Machinery, New York (2022). https://doi.org/10.1145/3528233.3530727

  28. Takikawa, T., et al.: Neural geometric level of detail: real-time rendering with implicit 3D shapes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 11358–11367 (2021)

    Google Scholar 

  29. Vizzo, I., Chen, X., Chebrolu, N., Behley, J., Stachniss, C.: Poisson surface reconstruction for LiDAR odometry and mapping. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (2021). http://www.ipb.uni-bonn.de/pdfs/vizzo2021icra.pdf

  30. Wang, P., Liu, L., Liu, Y., Theobalt, C., Komura, T., Wang, W.: NeuS: learning neural implicit surfaces by volume rendering for multi-view reconstruction. In: Ranzato, M., Beygelzimer, A., Dauphin, Y., Liang, P., Vaughan, J.W. (eds.) Advances in Neural Information Processing Systems, vol. 34, pp. 27171–27183. Curran Associates, Inc. (2021). https://proceedings.neurips.cc/paper_files/paper/2021/file/e41e164f7485ec4a28741a2d0ea41c74-Paper.pdf

  31. Yan, Z., Tian, Y., Shi, X., Guo, P., Wang, P., Zha, H.: Continual neural mapping: learning an implicit scene representation from sequential observations. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 15782–15792 (2021)

    Google Scholar 

  32. Yan, Z., Yang, H., Zha, H.: Active neural mapping. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 10981–10992 (2023)

    Google Scholar 

  33. Zhang, K., Riegler, G., Snavely, N., Koltun, V.: NeRF++: analyzing and improving neural radiance fields (2020)

    Google Scholar 

  34. Zhong, X., Pan, Y., Behley, J., Stachniss, C.: Shine-mapping: large-scale 3D mapping using sparse hierarchical implicit neural representations. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (2023)

    Google Scholar 

  35. Zhu, Z., et al.: NICE-SLAM: neural implicit scalable encoding for SLAM. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 12786–12796 (2022)

    Google Scholar 

Download references

Acknowledgments

This work was supported by Korea Evaluation Institute Of Industrial Technology (KEIT) grant funded by the Korea government(MOTIE) (No. 20023455, Development of Cooperate Mapping, Environment Recognition and Autonomous Driving Technology for Multi Mobile Robots Operating in Large-scale Indoor Workspace).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Euntai Kim .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (zip 167597 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Park, M., Woo, S., Kim, E. (2025). Decomposition of Neural Discrete Representations for Large-Scale 3D Mapping. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15130. Springer, Cham. https://doi.org/10.1007/978-3-031-73220-1_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-73220-1_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-73219-5

  • Online ISBN: 978-3-031-73220-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics