Abstract
Graph Neural Networks (GNNs) are increasingly popular in processing graph-structured data, yet they face significant challenges when training and testing distributions diverge, common in real-world scenarios. This divergence often leads to substantial performance drops in GNN models. To address this, we introduce a novel approach that effectively enhances GNN performance in Out-of-Distribution (OOD) scenarios, called Causal Subgraphs and Information Bottlenecks (CSIB). CSIB is guided by causal modeling principles to generate causal subgraphs while concurrently considering both Fully Informative Invariant Features (FIIF) and Partially Informative Invariant Features (PIIF) situations. Our approach uniquely combines the principles of invariant risk minimization and graph information bottleneck. This integration not only guides the generation of causal subgraphs but also underscores the necessity of balancing invariant principles with information compression in the face of various distribution shifts. We validate our model through extensive experiments across diverse shift types, demonstrating its effectiveness in maintaining robust performance under OOD conditions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Ahuja, K., et al.: Invariance principle meets information bottleneck for out-of-distribution generalization. Adv. Neural. Inf. Process. Syst. 34, 3438–3450 (2021)
Arjovsky, M., Bottou, L., Gulrajani, I., Lopez-Paz, D.: Invariant risk minimization. arXiv preprint arXiv:1907.02893 (2019)
Chang, S., Zhang, Y., Yu, M., Jaakkola, T.: Invariant rationalization. In: International Conference on Machine Learning, pp. 1448–1458. PMLR (2020)
Chen, Y., et al.: Learning causally invariant representations for out-of-distribution generalization on graphs. Adv. Neural. Inf. Process. Syst. 35, 22131–22148 (2022)
Ding, K., et al.: Graph convolutional networks for multi-modality medical imaging: Methods, architectures, and clinical applications. arXiv preprint arXiv:2202.08916 (2022)
Fan, S., Wang, X., Mo, Y., Shi, C., Tang, J.: Debiasing graph neural networks via learning disentangled causal substructure. Adv. Neural. Inf. Process. Syst. 35, 24934–24946 (2022)
Fan, S., Wang, X., Shi, C., Cui, P., Wang, B.: Generalizing graph neural networks on out-of-distribution graphs. IEEE Trans. Pattern Anal. Mach. Intell. 46(1), 322–337 (2023)
Geirhos, R., et al.: Shortcut learning in deep neural networks. Nat. Mach. Intell. 2(11), 665–673 (2020)
Gilbert, E.N.: Random graphs. Ann. Math. Stat. 30(4), 1141–1144 (1959)
Gui, S., Li, X., Wang, L., Ji, S.: GOOD: a graph out-of-distribution benchmark. Adv. Neural. Inf. Process. Syst. 35, 2059–2073 (2022)
Gui, S., Liu, M., Li, X., Luo, Y., Ji, S.: Joint learning of label and environment causal independence for graph out-of-distribution generalization. In: Advances in Neural Information Processing Systems, vol. 36 (2024)
He, X., Deng, K., Wang, X., Li, Y., Zhang, Y., Wang, M.: LightGCN: simplifying and powering graph convolution network for recommendation. In: Proceedings of the 43rd International ACM SIGIR conference on research and development in Information Retrieval, pp. 639–648 (2020)
Huang, J., Li, R.: Adaptive graph convolutional neural network and its biomedical applications. In: State of the Art in Neural Networks and Their Applications, pp. 105–132. Elsevier (2023)
Huszar, F.: Invariant risk minimization: An information theoretic view (2019)
Ji, Y., et al.: DrugOOD: out-of-distribution (OOD) dataset curator and benchmark for AI-aided drug discovery–a focus on affinity prediction problems with noise annotations. arXiv preprint arXiv:2201.09637 (2022)
Krueger, D., et al.: Out-of-distribution generalization via risk extrapolation (REx). In: International Conference on Machine Learning, pp. 5815–5826. PMLR (2021)
Li, H., Wang, X., Zhang, Z., Zhu, W.: OOD-GNN: out-of-distribution generalized graph neural network. IEEE Trans. Knowl. Data Eng. 35(7), 7328–7340 (2022)
Li, K., et al.: Reliable representations make a stronger defender: unsupervised structure refinement for robust GNN. In: Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 925–935 (2022)
Li, K., Liu, Y., Ao, X., He, Q.: Revisiting graph adversarial attack and defense from a data distribution perspective. In: The Eleventh International Conference on Learning Representations (2022)
Liu, G., Zhao, T., Xu, J., Luo, T., Jiang, M.: Graph rationalization with environment-based augmentations. In: Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 1069–1078 (2022)
Liu, S., Wang, H., Liu, W., Lasenby, J., Guo, H., Tang, J.: Pre-training molecular graph representation with 3D geometry. arXiv preprint arXiv:2110.07728 (2021)
Ma, H., An, W., Wang, Y., Sun, H., Huang, R., Huang, J.: Deep graph learning with property augmentation for predicting drug-induced liver injury. Chem. Res. Toxicol. 34(2), 495–506 (2020)
Ma, H., et al.: Cross-dependent graph neural networks for molecular property prediction. Bioinformatics 38(7), 2003–2009 (2022)
Ma, H., Jiang, F., Rong, Y., Guo, Y., Huang, J.: Robust self-training strategy for various molecular biology prediction tasks. In: Proceedings of the 13th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, pp. 1–5 (2022)
Miao, S., Liu, M., Li, P.: Interpretable and generalizable graph learning via stochastic attention mechanism. In: International Conference on Machine Learning, pp. 15524–15543. PMLR (2022)
Pearl, J.: Causality. Cambridge University Press, Cambridge (2009)
Peters, J., Bühlmann, P., Meinshausen, N.: Causal inference by using invariant prediction: identification and confidence intervals. J. R. Stat. Soc. Ser. B Stat. Methodol. 78(5), 947–1012 (2016)
Rong, Y., Huang, W., Xu, T., Huang, J.: DropEdge: Towards deep graph convolutional networks on node classification. arXiv preprint arXiv:1907.10903 (2019)
Sagawa, S., Koh, P.W., Hashimoto, T.B., Liang, P.: Distributionally robust neural networks for group shifts: On the importance of regularization for worst-case generalization. arXiv preprint arXiv:1911.08731 (2019)
Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The graph neural network model. IEEE Trans. Neural Netw. 20(1), 61–80 (2008)
Shi, C., Xu, M., Zhu, Z., Zhang, W., Zhang, M., Tang, J.: GraphAF: a flow-based autoregressive model for molecular graph generation. arXiv preprint arXiv:2001.09382 (2020)
Shi, Y., et al.: ChatGraph: interpretable text classification by converting ChatGPT knowledge to graphs. In: 2023 IEEE International Conference on Data Mining Workshops (ICDMW), pp. 515–520. IEEE (2023)
Sui, Y., Wang, X., Wu, J., Lin, M., He, X., Chua, T.S.: Causal attention for interpretable and generalizable graph classification. In: Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 1696–1705 (2022)
Wang, X., He, X., Wang, M., Feng, F., Chua, T.S.: Neural graph collaborative filtering. In: Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 165–174 (2019)
Wu, S., Sun, F., Zhang, W., Xie, X., Cui, B.: Graph neural networks in recommender systems: a survey. ACM Comput. Surv. 55(5), 1–37 (2022)
Wu, T., Ren, H., Li, P., Leskovec, J.: Graph information bottleneck. Adv. Neural. Inf. Process. Syst. 33, 20437–20448 (2020)
Wu, Y.X., Wang, X., Zhang, A., He, X., Chua, T.S.: Discovering invariant rationales for graph neural networks. arXiv preprint arXiv:2201.12872 (2022)
Yan, Y., He, S., Yu, Z., Yuan, J., Liu, Z., Chen, Y.: Investigation of customized medical decision algorithms utilizing graph neural networks. arXiv preprint arXiv:2405.17460 (2024)
Yang, J., et al.: Hierarchical graph capsule network. In: Proceedings of the AAAI Conference on Artificial Intelligence. vol. 35, pp. 10603–10611 (2021)
Yang, N., Zeng, K., Wu, Q., Jia, X., Yan, J.: Learning substructure invariance for out-of-distribution molecular representations. Adv. Neural. Inf. Process. Syst. 35, 12964–12978 (2022)
Yu, J., Xu, T., Rong, Y., Bian, Y., Huang, J., He, R.: Graph information bottleneck for subgraph recognition. arXiv preprint arXiv:2010.05563 (2020)
Acknowledgements
This work was partially supported by US National Science Foundation IIS-2412195, CCF-2400785 and the Cancer Prevention and Research Institute of Texas (CPRIT) award (RP230363).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
An, W., Zhong, W., Jiang, F., Ma, H., Huang, J. (2025). Causal Subgraphs and Information Bottlenecks: Redefining OOD Robustness in Graph Neural Networks. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15146. Springer, Cham. https://doi.org/10.1007/978-3-031-73223-2_26
Download citation
DOI: https://doi.org/10.1007/978-3-031-73223-2_26
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-73222-5
Online ISBN: 978-3-031-73223-2
eBook Packages: Computer ScienceComputer Science (R0)