Abstract
Magnetic Resonance Imaging (MRI) is a widely used imaging modality for clinical diagnostics and the planning of surgical interventions. Accelerated MRI seeks to mitigate the inherent limitation of long scanning time by reducing the amount of raw k-space data required for image reconstruction. Recently, the deep unrolled model (DUM) has demonstrated significant effectiveness and improved interpretability for MRI reconstruction, by truncating and unrolling the conventional iterative reconstruction algorithms with deep neural networks. However, the potential of DUM for MRI reconstruction has not been fully exploited. In this paper, we first enhance the gradient and information flow within and across iteration stages of DUM, then we highlight the importance of using various adjacent information for accurate and memory-efficient sensitivity map estimation and improved multi-coil MRI reconstruction. Extensive experiments on several public MRI reconstruction datasets show that our method outperforms existing MRI reconstruction methods by a large margin. The code is available at https://github.com/hellopipu/PromptMR-plus.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
It is usually a part of the acquired central k-space data.
References
Adler, J., Öktem, O.: Learned primal-dual reconstruction. IEEE Trans. Med. Imaging 37(6), 1322–1332 (2018)
Aggarwal, H.K., Mani, M.P., Jacob, M.: MoDL: model-based deep learning architecture for inverse problems. IEEE Trans. Med. Imaging 38(2), 394–405 (2018)
Arnold, T.C., Freeman, C.W., Litt, B., Stein, J.M.: Low-field MRI: clinical promise and challenges. J. Magn. Reson. Imaging 57(1), 25–44 (2023)
Arvinte, M., Vishwanath, S., Tewfik, A.H., Tamir, J.I.: Deep J-Sense: accelerated MRI reconstruction via unrolled alternating optimization. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12906, pp. 350–360. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87231-1_34
Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imag. Sci. 2(1), 183–202 (2009)
Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J., et al.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends® Mach. Learn. 3(1), 1–122 (2011)
Candès, E.J., et al.: Compressive sampling. In: Proceedings of the International Congress of Mathematicians, vol. 3, pp. 1433–1452, Madrid, Spain (2006)
Deshmane, A., Gulani, V., Griswold, M.A., Seiberlich, N.: Parallel MR imaging. J. Magn. Reson. Imaging 36(1), 55–72 (2012)
Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning and stochastic optimization. J. Mach. Learn. Res. 12(7), 2121–2159 (2011)
El-Rewaidy, H., et al.: Multi-domain convolutional neural network (MD-CNN) for radial reconstruction of dynamic cardiac MRI. Magn. Reson. Med. 85(3), 1195–1208 (2021)
Eo, T., Jun, Y., Kim, T., Jang, J., Lee, H.J., Hwang, D.: KIKI-Net: cross-domain convolutional neural networks for reconstructing undersampled magnetic resonance images. Magn. Reson. Med. 80(5), 2188–2201 (2018)
Fabian, Z., Tinaz, B., Soltanolkotabi, M.: HUMUS-Net: hybrid unrolled multi-scale network architecture for accelerated MRI reconstruction. Adv. Neural. Inf. Process. Syst. 35, 25306–25319 (2022)
Gregor, K., LeCun, Y.: Learning fast approximations of sparse coding. In: Proceedings of the 27th International Conference on International Conference on Machine Learning, pp. 399–406 (2010)
Griswold, M.A., et al.: Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn. Reson. Med. Official J. Int. Soc. Magn. Reson. Med. 47(6), 1202–1210 (2002)
Hammernik, K., et al.: Learning a variational network for reconstruction of accelerated MRI data. Magn. Reson. Med. 79(6), 3055–3071 (2018)
Hosseini, S.A.H., Yaman, B., Moeller, S., Hong, M., Akçakaya, M.: Dense recurrent neural networks for accelerated MRI: history-cognizant unrolling of optimization algorithms. IEEE J. Sel. Topics Signal Process. 14(6), 1280–1291 (2020)
Jun, Y., Shin, H., Eo, T., Hwang, D.: Joint deep model-based MR image and coil sensitivity reconstruction network (Joint-ICNet) for fast MRI. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5270–5279 (2021)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
Lauterbur, P.C.: Image formation by induced local interactions: examples employing nuclear magnetic resonance. Nature 242(5394), 190–191 (1973)
LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)
Liu, X., Pang, Y., Jin, R., Liu, Y., Wang, Z.: Dual-domain reconstruction network with V-Net and K-Net for fast MRI. Magn. Reson. Med. 88(6), 2694–2708 (2022)
Lustig, M., Donoho, D., Pauly, J.M.: Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn. Reson. Med. Official J. Int. Soc. Magn. Reson. Med. 58(6), 1182–1195 (2007)
Monga, V., Li, Y., Eldar, Y.C.: Algorithm unrolling: Interpretable, efficient deep learning for signal and image processing. IEEE Signal Process. Mag. 38(2), 18–44 (2021)
Munoz, C., Fotaki, A., Botnar, R.M., Prieto, C.: Latest advances in image acceleration: all dimensions are fair game. J. Magn. Reson. Imaging 57(2), 387–402 (2023)
Nayak, K.S., Lim, Y., Campbell-Washburn, A.E., Steeden, J.: Real-time magnetic resonance imaging. J. Magn. Reson. Imaging 55(1), 81–99 (2022)
Ongie, G., Jalal, A., Metzler, C.A., Baraniuk, R.G., Dimakis, A.G., Willett, R.: Deep learning techniques for inverse problems in imaging. IEEE J. Sel. Areas Inf. Theory 1(1), 39–56 (2020)
Ottesen, J.A., Caan, M.W., Groote, I.R., Bjørnerud, A.: A densely interconnected network for deep learning accelerated MRI. Magn. Reson. Mater. Phys., Biol. Med. 36(1), 65–77 (2023)
Pezzotti, N., et al.: An adaptive intelligence algorithm for undersampled knee MRI reconstruction. IEEE Access 8, 204825–204838 (2020)
Polyak, B.T.: Some methods of speeding up the convergence of iteration methods. USSR Comput. Math. Math. Phys. 4(5), 1–17 (1964)
Pruessmann, K.P., Weiger, M., Scheidegger, M.B., Boesiger, P.: SENSE: sensitivity encoding for fast MRI. Magn. Reson. Med. Official J. Int. Soc. Magn. Reson. Med. 42(5), 952–962 (1999)
Putzky, P., et al.: i-RIM applied to the fastMRI challenge. arXiv preprint arXiv:1910.08952 (2019)
Putzky, P., Welling, M.: Recurrent inference machines for solving inverse problems. arXiv preprint arXiv:1706.04008 (2017)
Putzky, P., Welling, M.: Invert to learn to invert. In: Advances in Neural Information Processing Systems, vol. 32 (2019)
Ramzi, Z., Chaithya, G., Starck, J.L., Ciuciu, P.: NC-PDNet: a density-compensated unrolled network for 2D and 3D non-cartesian MRI reconstruction. IEEE Trans. Med. Imaging 41(7), 1625–1638 (2022)
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W., Frangi, A. (eds.) Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, 5–9 October 2015, Proceedings, Part III 18, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Schlemper, J., Caballero, J., Hajnal, J.V., Price, A.N., Rueckert, D.: A deep cascade of convolutional neural networks for dynamic MR image reconstruction. IEEE Trans. Med. Imaging 37(2), 491–503 (2017)
Singh, D., Monga, A., de Moura, H.L., Zhang, X., Zibetti, M.V., Regatte, R.R.: Emerging trends in fast MRI using deep-learning reconstruction on undersampled k-Space data: a systematic review. Bioengineering 10(9), 1012 (2023)
Song, J., Chen, B., Zhang, J.: Memory-augmented deep unfolding network for compressive sensing. In: Proceedings of the 29th ACM International Conference on Multimedia, pp. 4249–4258 (2021)
Souza, R., et al.: An open, multi-vendor, multi-field-strength brain MR dataset and analysis of publicly available skull stripping methods agreement. Neuroimage 170, 482–494 (2018)
Sriram, A., et al.: End-to-end variational networks for accelerated MRI reconstruction. In: Martel, A.L., et al. (eds.) Medical Image Computing and Computer Assisted Intervention–MICCAI 2020: 23rd International Conference, Lima, Peru, 4–8 October 2020, Proceedings, Part II 23, pp. 64–73. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59713-9_7
Sun, J., Li, H., Xu, Z., et al.: Deep ADMM-Net for compressive sensing MRI. In: Advances in Neural Information Processing Systems, vol. 29 (2016)
Tieleman, T.: Lecture 6.5-rmsprop: divide the gradient by a running average of its recent magnitude. COURSERA: Neural Netw. Mach. Learn. 4(2), 26 (2012)
Uecker, M., et al.: ESPIRiT-an eigenvalue approach to autocalibrating parallel MRI: where sense meets grappa. Magn. Reson. Med. 71(3), 990–1001 (2014)
Wang, C., et al.: CMRxRecon: an open cardiac MRI dataset for the competition of accelerated image reconstruction. arXiv preprint arXiv:2309.10836 (2023)
Xin, B., Ye, M., Axel, L., Metaxas, D.N.: Fill the K-Space and refine the image: prompting for dynamic and multi-contrast MRI reconstruction. In: Camara, O., et al. (eds.) Statistical Atlases and Computational Models of the Heart. Regular and CMRxRecon Challenge Papers, STACOM 2023. LNCS, vol. 14507, pp. 261–273. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-52448-6_25
Yiasemis, G., Sonke, J.J., Sánchez, C., Teuwen, J.: Recurrent variational network: a deep learning inverse problem solver applied to the task of accelerated MRI reconstruction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 732–741 (2022)
Ying, L., Sheng, J.: Joint image reconstruction and sensitivity estimation in SENSE (JSENSE). Magn. Reson. Med. Official J. Int. Soc. Magn. Reson. Med. 57(6), 1196–1202 (2007)
You, D., Xie, J., Zhang, J.: ISTA-Net++: flexible deep unfolding network for compressive sensing. In: 2021 IEEE International Conference on Multimedia and Expo (ICME), pp. 1–6. IEEE (2021)
Zbontar, J., et al.: FastMRI: an open dataset and benchmarks for accelerated MRI. arXiv preprint arXiv:1811.08839 (2018)
Zeiler, M.D.: AdaDelta: an adaptive learning rate method. arXiv preprint arXiv:1212.5701 (2012)
Zhang, J., Chen, B., Xiong, R., Zhang, Y.: Physics-inspired compressive sensing: beyond deep unrolling. IEEE Signal Process. Mag. 40(1), 58–72 (2023)
Zhang, J., Ghanem, B.: ISTA-Net: interpretable optimization-inspired deep network for image compressive sensing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1828–1837 (2018)
Zhang, J., Zhang, Z., Xie, J., Zhang, Y.: High-throughput deep unfolding network for compressive sensing MRI. IEEE J. Sel. Topics Signal Process. 16(4), 750–761 (2022)
Zhang, Z., Liu, Y., Liu, J., Wen, F., Zhu, C.: AMP-Net: denoising-based deep unfolding for compressive image sensing. IEEE Trans. Image Process. 30, 1487–1500 (2020)
Zhao, R., et al.: FastMRI+, clinical pathology annotations for knee and brain fully sampled magnetic resonance imaging data. Sci. Data 9(1), 152 (2022)
Zhou, B., Zhou, S.K.: DuDoRNet: learning a dual-domain recurrent network for fast MRI reconstruction with deep T1 prior. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4273–4282 (2020)
Acknowledgments
This research has been partially funded by research grants to D. Metaxas through NSF: 2310966, 2235405, 2212301, 2003874, and FA9550-23-1-0417 and NIH 2R01HL127661.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Xin, B., Ye, M., Axel, L., Metaxas, D.N. (2025). Rethinking Deep Unrolled Model for Accelerated MRI Reconstruction. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15133. Springer, Cham. https://doi.org/10.1007/978-3-031-73226-3_10
Download citation
DOI: https://doi.org/10.1007/978-3-031-73226-3_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-73225-6
Online ISBN: 978-3-031-73226-3
eBook Packages: Computer ScienceComputer Science (R0)