Skip to main content

Rethinking Fast Adversarial Training: A Splitting Technique to Overcome Catastrophic Overfitting

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Abstract

Catastrophic overfitting (CO) poses a significant challenge to fast adversarial training (FastAT), particularly at large perturbation scales, leading to dramatic reductions in adversarial test accuracy. Our analysis of existing FastAT methods shows that CO is accompanied by abrupt and irregular fluctuations in loss convergence, indicating that a stable training dynamic is key to preventing CO. Therefore, we propose a training model that uses the Douglas-Rachford (DR) splitting technique to ensure a balanced and consistent training progression, effectively counteracting CO. The DR splitting technique, known for its ability to solve complex optimization problems, offering a distinct advantage over classical FastAT methods by providing a smoother loss convergence. This is achieved without resorting to complex regularization or incurring the computational costs associated with double backpropagation, presenting an efficient solution to enhance adversarial robustness. Our comprehensive evaluation conducted across standard datasets, demonstrates that our DR splitting-based model not only improves adversarial robustness but also achieves this with remarkable efficiency compared to various FastAT methods. This efficiency is particularly observed under conditions involving long training schedules and large adversarial perturbations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Addepalli, S., Jain, S., Sriramanan, G., Venkatesh Babu, R.: Scaling adversarial training to large perturbation bounds. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13665, pp. 301–316. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20065-6_18

    Chapter  Google Scholar 

  2. Andriushchenko, M., Croce, F., Flammarion, N., Hein, M.: Square attack: a query-efficient black-box adversarial attack via random search. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12368, pp. 484–501. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58592-1_29

    Chapter  Google Scholar 

  3. Andriushchenko, M., Flammarion, N.: Understanding and improving fast adversarial training. Adv. Neural. Inf. Process. Syst. 33, 16048–16059 (2020)

    Google Scholar 

  4. Applegate, D., Hinder, O., Lu, H., Lubin, M.: Faster first-order primal-dual methods for linear programming using restarts and sharpness. Math. Program. 201(1), 133–184 (2023)

    Article  MathSciNet  Google Scholar 

  5. Carlini, N., Wagner, D.: Towards evaluating the robustness of neural networks. In: 2017 IEEE Symposium on Security and Privacy (SP), pp. 39–57 (2017)

    Google Scholar 

  6. Chambolle, A., Contreras, J.P.: Accelerated Bregman primal-dual methods applied to optimal transport and Wasserstein barycenter problems. SIAM J. Math. Data Sci. 4(4), 1369–1395 (2022)

    Article  MathSciNet  Google Scholar 

  7. Croce, F., Hein, M.: Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free attacks. In: International Conference on Machine Learning, pp. 2206–2216 (2020)

    Google Scholar 

  8. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 248–255 (2009)

    Google Scholar 

  9. Dong, Y., et al.: Boosting adversarial attacks with momentum. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9185–9193 (2018)

    Google Scholar 

  10. Golgooni, Z., Saberi, M., Eskandar, M., Rohban, M.H.: ZeroGrad: mitigating and explaining catastrophic overfitting in FGSM adversarial training. arXiv preprint arXiv:2103.15476 (2021)

  11. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. In: International Conference on Learning Representations (2014)

    Google Scholar 

  12. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  13. He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016, Part IV. LNCS, vol. 9908, pp. 630–645. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_38

    Chapter  Google Scholar 

  14. He, Z., Li, T., Chen, S., Huang, X.: Investigating catastrophic overfitting in fast adversarial training: a self-fitting perspective. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2313–2320 (2023)

    Google Scholar 

  15. Jia, X., et al.: Prior-guided adversarial initialization for fast adversarial training. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13664, pp. 567–584. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19772-7_33

    Chapter  Google Scholar 

  16. de Jorge Aranda, P., et al.: Make some noise: reliable and efficient single-step adversarial training. Adv. Neural. Inf. Process. Syst. 35, 12881–12893 (2022)

    Google Scholar 

  17. Kurakin, A., Goodfellow, I., Bengio, S.: Adversarial machine learning at scale. arXiv preprint arXiv:1611.01236 (2016)

  18. Li, T., Wu, Y., Chen, S., Fang, K., Huang, X.: Subspace adversarial training. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13409–13418 (2022)

    Google Scholar 

  19. Liang, J., Fadili, J., Peyré, G.: Local convergence properties of Douglas-Rachford and alternating direction method of multipliers. J. Optim. Theory Appl. 172, 874–913 (2017)

    Article  MathSciNet  Google Scholar 

  20. Lindbäck, J., Wang, Z., Johansson, M.: Bringing regularized optimal transport to lightspeed: a splitting method adapted for GPUs. Adv. Neural Inf. Process. Syst. 36 (2023)

    Google Scholar 

  21. Liu, X., Chakraborty, S., Sun, Y., Huang, F.: Rethinking adversarial policies: a generalized attack formulation and provable defense in RL. In: International Conference on Learning Representations (2024)

    Google Scholar 

  22. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning models resistant to adversarial attacks. International Conference on Learning Representations (2018)

    Google Scholar 

  23. Mai, V.V., Lindbäck, J., Johansson, M.: A fast and accurate splitting method for optimal transport: analysis and implementation. In: International Conference on Learning Representations (2022)

    Google Scholar 

  24. Moosavi-Dezfooli, S.M., Fawzi, A., Uesato, J., Frossard, P.: Robustness via curvature regularization, and vice versa. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9078–9086 (2019)

    Google Scholar 

  25. Park, G.Y., Lee, S.W.: Reliably fast adversarial training via latent adversarial perturbation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 7758–7767 (2021)

    Google Scholar 

  26. Poon, C., Liang, J.: Trajectory of alternating direction method of multipliers and adaptive acceleration. Adv. Neural Inf. Process. Syst. 32 (2019)

    Google Scholar 

  27. Qin, C., et al.: Adversarial robustness through local linearization. Adv. Neural Inf. Process. Syst. 32 (2019)

    Google Scholar 

  28. Rocamora, E.A., Liu, F., Chrysos, G.G., Olmos, P.M., Cevher, V.: Efficient local linearity regularization to overcome catastrophic overfitting. In: International Conference on Learning Representations (2024)

    Google Scholar 

  29. Shaeiri, A., Nobahari, R., Rohban, M.H.: Towards deep learning models resistant to large perturbations. arXiv preprint arXiv:2003.13370 (2020)

  30. Shafahi, A., et al.: Adversarial training for free! Adv. Neural Inf. Process. Syste. 32 (2019)

    Google Scholar 

  31. Song, C., He, K., Wang, L., Hopcroft, J.E.: Improving the generalization of adversarial training with domain adaptation. In: International Conference on Learning Representations (2019)

    Google Scholar 

  32. Sriramanan, G., Addepalli, S., Baburaj, A., et al.: Guided adversarial attack for evaluating and enhancing adversarial defenses. Adv. Neural. Inf. Process. Syst. 33, 20297–20308 (2020)

    Google Scholar 

  33. Sriramanan, G., Addepalli, S., Baburaj, A., et al.: Towards efficient and effective adversarial training. Adv. Neural. Inf. Process. Syst. 34, 11821–11833 (2021)

    Google Scholar 

  34. Themelis, A., Patrinos, P.: Douglas-Rachford splitting and ADMM for nonconvex optimization: tight convergence results. SIAM J. Optim. 30(1), 149–181 (2020)

    Article  MathSciNet  Google Scholar 

  35. Tsiligkaridis, T., Roberts, J.: Understanding and increasing efficiency of Frank-Wolfe adversarial training. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 50–59 (2022)

    Google Scholar 

  36. Wong, E., Rice, L., Kolter, J.Z.: Fast is better than free: revisiting adversarial training. In: International Conference on Learning Representations (2020)

    Google Scholar 

  37. Wu, D., Xia, S.T., Wang, Y.: Adversarial weight perturbation helps robust generalization. Adv. Neural Inf. Process. Syst. (2020)

    Google Scholar 

  38. Xie, Y., Li, Z., Shi, C., Liu, J., Chen, Y., Yuan, B.: Enabling fast and universal audio adversarial attack using generative model. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 14129–14137 (2021)

    Google Scholar 

  39. Zagoruyko, S., Komodakis, N.: Wide residual networks. arXiv preprint arXiv:1605.07146 (2016)

  40. Zhang, H., Yu, Y., Jiao, J., Xing, E., El Ghaoui, L., Jordan, M.: Theoretically principled trade-off between robustness and accuracy. In: International Conference on Machine Learning, pp. 7472–7482 (2019)

    Google Scholar 

  41. Zhang, Y., Zhang, G., Khanduri, P., Hong, M., Chang, S., Liu, S.: Revisiting and advancing fast adversarial training through the lens of bi-level optimization. In: International Conference on Machine Learning, pp. 26693–26712 (2022)

    Google Scholar 

  42. Zhao, M., Zhang, L., Kong, Y., Yin, B.: Fast adversarial training with smooth convergence. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4720–4729 (2023)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pourya Shamsolmoali .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 4001 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zareapoor, M., Shamsolmoali, P. (2025). Rethinking Fast Adversarial Training: A Splitting Technique to Overcome Catastrophic Overfitting. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15136. Springer, Cham. https://doi.org/10.1007/978-3-031-73229-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-73229-4_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-73228-7

  • Online ISBN: 978-3-031-73229-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics