Skip to main content

H-V2X: A Large Scale Highway Dataset for BEV Perception

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15059))

Included in the following conference series:

  • 941 Accesses

Abstract

Vehicle-to-everything (V2X) technology has become an area of interest in research due to the availability of roadside infrastructure perception datasets. However, these datasets primarily focus on urban intersections and lack data on highway scenarios. Additionally, the perception tasks in the datasets are mainly MONO 3D due to limited synchronized data across multiple sensors. To bridge this gap, we propose Highway-V2X (H-V2X), the first large-scale highway Bird’s-Eye-View (BEV) perception dataset captured by sensors in the real world. The dataset covers over 100 km of highway, with a diverse range of road and weather conditions. H-V2X consists of over 1.9 million fine-grained categorized samples in BEV space, captured by multiple synchronized cameras, with vector map provided. We performed joint 2D-3D calibrations to ensure correct projection and human labor was involved to ensure data quality. Furthermore, we propose three highly relevant tasks to the highway scenario: BEV detection, BEV tracking, and trajectory prediction. We conducted benchmarks for each task, and innovative methods incorporating vector map information were proposed. We hope that H-V2X and benchmark methods will facilitate highway BEV perception research direction. The dataset is available at https://pan.quark.cn/s/86d19da10d18.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bewley, A., Ge, Z., Ott, L., Ramos, F., Upcroft, B.: Simple online and realtime tracking. In: 2016 IEEE International Conference on Image Processing (ICIP), pp. 3464–3468. IEEE (2016)

    Google Scholar 

  2. Brazil, G., Liu, X.: M3d-rpn: Monocular 3d region proposal network for object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9287–9296 (2019)

    Google Scholar 

  3. Brazil, G., Pons-Moll, G., Liu, X., Schiele, B.: Kinematic 3D object detection in monocular video. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12368, pp. 135–152. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58592-1_9

    Chapter  Google Scholar 

  4. Caesar, H., et al.: nuscenes: a multimodal dataset for autonomous driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11621–11631 (2020)

    Google Scholar 

  5. Chen, Z., Shi, Y., Jia, J.: Transiff: an instance-level feature fusion framework for vehicle-infrastructure cooperative 3d detection with transformers. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 18205–18214 (2023)

    Google Scholar 

  6. Creß, C., et al.: A9-dataset: multi-sensor infrastructure-based dataset for mobility research. In: 2022 IEEE Intelligent Vehicles Symposium (IV), pp. 965–970. IEEE (2022)

    Google Scholar 

  7. Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., Koltun, V.: Carla: an open urban driving simulator. In: Conference on Robot Learning, pp. 1–16. PMLR (2017)

    Google Scholar 

  8. Fan, S., Yu, H., Yang, W., Yuan, J., Nie, Z.: Quest: query stream for vehicle-infrastructure cooperative perception. arXiv preprint arXiv:2308.01804 (2023)

  9. Ge, Z., Liu, S., Wang, F., Li, Z., Sun, J.: Yolox: Exceeding yolo series in 2021. arXiv preprint arXiv:2107.08430 (2021)

  10. Gupta, A., Johnson, J., Fei-Fei, L., Savarese, S., Alahi, A.: Social gan: socially acceptable trajectories with generative adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2255–2264 (2018)

    Google Scholar 

  11. Howe, M., Reid, I., Mackenzie, J.: Weakly supervised training of monocular 3d object detectors using wide baseline multi-view traffic camera data. arXiv preprint arXiv:2110.10966 (2021)

  12. Hu, Y., Fang, S., Lei, Z., Zhong, Y., Chen, S.: Where2comm: communication-efficient collaborative perception via spatial confidence maps. Adv. Neural. Inf. Process. Syst. 35, 4874–4886 (2022)

    Google Scholar 

  13. Huang, J., Huang, G., Zhu, Z., Ye, Y., Du, D.: Bevdet: High-performance multi-camera 3d object detection in bird-eye-view. arXiv preprint arXiv:2112.11790 (2021)

  14. Jiang, W., et al.: Optimizing the placement of roadside lidars for autonomous driving. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 18381–18390 (2023)

    Google Scholar 

  15. Krajewski, R., Bock, J., Kloeker, L., Eckstein, L.: The highd dataset: a drone dataset of naturalistic vehicle trajectories on german highways for validation of highly automated driving systems. In: 2018 21st International Conference on Intelligent Transportation Systems (ITSC), pp. 2118–2125. IEEE (2018)

    Google Scholar 

  16. Krajzewicz, D., Erdmann, J., Behrisch, M., Bieker, L.: Recent development and applications of sumo-simulation of urban mobility. Inter. J. Adv. Syst. Measurem. 5(3 &4) (2012)

    Google Scholar 

  17. Lang, A.H., Vora, S., Caesar, H., Zhou, L., Yang, J., Beijbom, O.: Pointpillars: fast encoders for object detection from point clouds. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12697–12705 (2019)

    Google Scholar 

  18. Li, Y., et al.: V2x-sim: multi-agent collaborative perception dataset and benchmark for autonomous driving. IEEE Robot. Autom. Lett. 7(4), 10914–10921 (2022)

    Article  Google Scholar 

  19. Li, Z., et al.: Bevformer: learning bird’s-eye-view representation from multi-camera images via spatiotemporal transformers. In: European Conference on Computer Vision, pp. 1–18. Springer (2022). https://doi.org/10.1007/978-3-031-20077-9_1

  20. Liu, S., et al.: Towards vehicle-to-everything autonomous driving: A survey on collaborative perception. arXiv preprint arXiv:2308.16714 (2023)

  21. Ma, X., et al.: Delving into localization errors for monocular 3d object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4721–4730 (2021)

    Google Scholar 

  22. Qian, R., Lai, X., Li, X.: 3d object detection for autonomous driving: a survey. Pattern Recogn. 130, 108796 (2022)

    Article  Google Scholar 

  23. Rukhovich, D., Vorontsova, A., Konushin, A.: Imvoxelnet: image to voxels projection for monocular and multi-view general-purpose 3d object detection. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 2397–2406 (2022)

    Google Scholar 

  24. Sindagi, V.A., Zhou, Y., Tuzel, O.: Mvx-net: multimodal voxelnet for 3d object detection. In: 2019 International Conference on Robotics and Automation (ICRA), pp. 7276–7282. IEEE (2019)

    Google Scholar 

  25. Sun, P., et al.: Scalability in perception for autonomous driving: Waymo open dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2446–2454 (2020)

    Google Scholar 

  26. Wang, B., Zhang, L., Wang, Z., Zhao, Y., Zhou, T.: Core: cooperative reconstruction for multi-agent perception. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8710–8720 (2023)

    Google Scholar 

  27. Xu, R., Xiang, H., Xia, X., Han, X., Li, J., Ma, J.: Opv2v: An open benchmark dataset and fusion pipeline for perception with vehicle-to-vehicle communication. In: 2022 International Conference on Robotics and Automation (ICRA), pp. 2583–2589. IEEE (2022)

    Google Scholar 

  28. Yan, Y., Mao, Y., Li, B.: Second: sparsely embedded convolutional detection. Sensors 18(10), 3337 (2018)

    Article  Google Scholar 

  29. Yan, Z., Li, P., et al.: Int2: interactive trajectory prediction at intersections. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8536–8547 (2023)

    Google Scholar 

  30. Yang, B., Luo, W., Urtasun, R.: Pixor: real-time 3d object detection from point clouds. In: Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, pp. 7652–7660 (2018)

    Google Scholar 

  31. Yang, K., et al.: Spatio-temporal domain awareness for multi-agent collaborative perception. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 23383–23392 (2023)

    Google Scholar 

  32. Yang, L., et al.: Bevheight++: Toward robust visual centric 3d object detection. arXiv preprint arXiv:2309.16179 (2023)

  33. Yang, L., et al.: Monogae: Roadside monocular 3d object detection with ground-aware embeddings. arXiv preprint arXiv:2310.00400 (2023)

  34. Yang, L., et al.: Bevheight: a robust framework for vision-based roadside 3d object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 21611–21620 (2023)

    Google Scholar 

  35. Ye, X., et al.: Rope3d: the roadside perception dataset for autonomous driving and monocular 3d object detection task. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 21341–21350 (2022)

    Google Scholar 

  36. Yu, H., et al.: Dair-v2x: A large-scale dataset for vehicle-infrastructure cooperative 3d object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 21361–21370 (2022)

    Google Scholar 

  37. Yu, H., Tang, Y., Xie, E., Mao, J., Luo, P., Nie, Z.: Flow-based feature fusion for vehicle-infrastructure cooperative 3d object detection. arXiv preprint arXiv:2311.01682 (2023)

  38. Yu, H., et al.: V2x-seq: A large-scale sequential dataset for vehicle-infrastructure cooperative perception and forecasting. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5486–5495 (2023)

    Google Scholar 

  39. Yurtsever, E., Lambert, J., Carballo, A., Takeda, K.: A survey of autonomous driving: common practices and emerging technologies. IEEE Access 8, 58443–58469 (2020)

    Article  Google Scholar 

  40. Zhang, Y., Lu, J., Zhou, J.: Objects are different: flexible monocular 3d object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3289–3298 (2021)

    Google Scholar 

  41. Zhang, Z.: A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1330–1334 (2000)

    Article  Google Scholar 

  42. Zhao, H., et al.: Tnt: Target-driven trajectory prediction. In: Conference on Robot Learning, pp. 895–904. PMLR (2021)

    Google Scholar 

  43. Zhou, Y., Tuzel, O.: Voxelnet: end-to-end learning for point cloud based 3d object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4490–4499 (2018)

    Google Scholar 

  44. Zhou, Z., Ye, L., Wang, J., Wu, K., Lu, K.: Hivt: hierarchical vector transformer for multi-agent motion prediction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8823–8833 (2022)

    Google Scholar 

  45. Zimmer, W., et al.: Infradet3d: Multi-modal 3d object detection based on roadside infrastructure camera and lidar sensors. arXiv preprint arXiv:2305.00314 (2023)

  46. Zimmer, W., Creß, C., Nguyen, H.T., Knoll, A.C.: A9 intersection dataset: All you need for urban 3d camera-lidar roadside perception. arXiv preprint arXiv:2306.09266 (2023)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, C., Zhu, M., Ma, C. (2025). H-V2X: A Large Scale Highway Dataset for BEV Perception. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15059. Springer, Cham. https://doi.org/10.1007/978-3-031-73232-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-73232-4_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-73231-7

  • Online ISBN: 978-3-031-73232-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics