Skip to main content

Hierarchical Temporal Context Learning for Camera-Based Semantic Scene Completion

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15062))

Included in the following conference series:

  • 482 Accesses

Abstract

Camera-based 3D semantic scene completion (SSC) is pivotal for predicting complicated 3D layouts with limited 2D image observations. The existing mainstream solutions generally leverage temporal information by roughly stacking history frames to supplement the current frame, such straightforward temporal modeling inevitably diminishes valid clues and increases learning difficulty. To address this problem, we present HTCL, a novel Hierarchical Temporal Context Learning paradigm for improving camera-based semantic scene completion. The primary innovation of this work involves decomposing temporal context learning into two hierarchical steps: (a) cross-frame affinity measurement and (b) affinity-based dynamic refinement. Firstly, to separate critical relevant context from redundant information, we introduce the pattern affinity with scale-aware isolation and multiple independent learners for fine-grained contextual correspondence modeling. Subsequently, to dynamically compensate for incomplete observations, we adaptively refine the feature sampling locations based on initially identified locations with high affinity and their neighboring relevant regions. Our method ranks \(1^{st}\) on the SemanticKITTI benchmark and even surpasses LiDAR-based methods in terms of mIoU on the OpenOccupancy benchmark. Our code is available on https://github.com/Arlo0o/HTCL.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Anastasiu, D.C., Karypis, G.: L2ap: fast cosine similarity search with prefix l-2 norm bounds. In: International Conference on Data Engineering. IEEE (2014)

    Google Scholar 

  2. Behley, J., et al.: Semantickitti: a dataset for semantic scene understanding of lidar sequences. In: ICCV (2019)

    Google Scholar 

  3. Bhat, S.F., Alhashim, I., Wonka, P.: Adabins: depth estimation using adaptive bins. In: CVPR (2021)

    Google Scholar 

  4. Caesar, H., et al.: nuscenes: a multimodal dataset for autonomous driving. In: CVPR (2020)

    Google Scholar 

  5. Cai, C., Ji, P., Yan, Q., Xu, Y.: Riav-mvs: recurrent-indexing an asymmetric volume for multi-view stereo. In: CVPR (2023)

    Google Scholar 

  6. Cai, Y., Chen, X., Zhang, C., Lin, K.Y., Wang, X., Li, H.: Semantic scene completion via integrating instances and scene in-the-loop. In: CVPR (2021)

    Google Scholar 

  7. Cao, A.Q., de Charette, R.: Monoscene: monocular 3d semantic scene completion. In: CVPR (2022)

    Google Scholar 

  8. Chen, X., Lin, K.Y., Qian, C., Zeng, G., Li, H.: 3d sketch-aware semantic scene completion via semi-supervised structure prior. In: CVPR (2020)

    Google Scholar 

  9. Cheng, R., Agia, C., Ren, Y., Li, X., Bingbing, L.: S3cnet: a sparse semantic scene completion network for lidar point clouds. In: Conference on Robot Learning (2021)

    Google Scholar 

  10. Cheng, X., et al.: Hierarchical neural architecture search for deep stereo matching. In: NeurIPS, vol. 33 (2020)

    Google Scholar 

  11. Dai, J., Qi, H., Xiong, Y., Li, Y., Zhang, G., Hu, H., Wei, Y.: Deformable convolutional networks. In: ICCV (2017)

    Google Scholar 

  12. Evangelopoulos, N., Zhang, X., Prybutok, V.R.: Latent semantic analysis: five methodological recommendations. Eur. J. Inf. Syst. 21(1), 70–86 (2012)

    Article  Google Scholar 

  13. Evangelopoulos, N.E.: Latent semantic analysis. Wiley Interdisc, Rev. Cogn. Sci. 4(6) (2013)

    Google Scholar 

  14. Garbade, M., Chen, Y.T., Sawatzky, J., Gall, J.: Two stream 3d semantic scene completion. In: CVPRW (2019)

    Google Scholar 

  15. Guizilini, V., Ambrus, R., Pillai, S., Raventos, A., Gaidon, A.: 3d packing for self-supervised monocular depth estimation. In: CVPR (2020)

    Google Scholar 

  16. Huang, Y., Zheng, W., Zhang, Y., Zhou, J., Lu, J.: Tri-perspective view for vision-based 3d semantic occupancy prediction. In: CVPR (2023)

    Google Scholar 

  17. Kopf, J., Rong, X., Huang, J.B.: Robust consistent video depth estimation. In: CVPR (2021)

    Google Scholar 

  18. Korenius, T., Laurikkala, J., Juhola, M.: On principal component analysis, cosine and euclidean measures in information retrieval. Inf. Sci. 177(22), 4893–4905 (2007)

    Article  MathSciNet  Google Scholar 

  19. Li, B., et al.: Stereoscene: bev-assisted stereo matching empowers 3d semantic scene completion (2023)

    Google Scholar 

  20. Li, J., Han, K., Wang, P., Liu, Y., Yuan, X.: Anisotropic convolutional networks for 3d semantic scene completion. In: CVPR (2020)

    Google Scholar 

  21. Li, S., Luo, Y., Zhu, Y., Zhao, X., Li, Y., Shan, Y.: Enforcing temporal consistency in video depth estimation. In: ICCV (2021)

    Google Scholar 

  22. Li, Y., et al.: Voxformer: sparse voxel transformer for camera-based 3d semantic scene completion. In: CVPR (2023)

    Google Scholar 

  23. Li, Y., et al.: Bevdepth: acquisition of reliable depth for multi-view 3d object detection. In: AAAI (2023)

    Google Scholar 

  24. Lin, X., Lin, T., Pei, Z., Huang, L., Su, Z.: Sparse4d: multi-view 3d object detection with sparse spatial-temporal fusion. arXiv preprint arXiv:2211.10581 (2022)

  25. Liu, Y., Wang, T., Zhang, X., Sun, J.: Petr: Position embedding transformation for multi-view 3d object detection. In: Avidan, S., Brostow, G., Cisse, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022, vol. 13687, pp. 531–548. Springer, Heidelberg (2022)

    Google Scholar 

  26. Liu, Y., et al.: Petrv2: a unified framework for 3d perception from multi-camera images. In: ICCV (2023)

    Google Scholar 

  27. Long, X., Liu, L., Li, W., Theobalt, C., Wang, W.: Multi-view depth estimation using epipolar spatio-temporal networks. In: CVPR (2021)

    Google Scholar 

  28. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101 (2017)

  29. Luo, X., Huang, J.B., Szeliski, R., Matzen, K., Kopf, J.: Consistent video depth estimation. ACM Trans. Graph. (ToG) 39 (2020)

    Google Scholar 

  30. Newcombe, R.A., Lovegrove, S.J., Davison, A.J.: Dtam: dense tracking and mapping in real-time. In: ICCV (2011)

    Google Scholar 

  31. Philion, J., Fidler, S.: Lift, splat, shoot: encoding images from arbitrary camera rigs by implicitly unprojecting to 3D. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12359, pp. 194–210. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58568-6_12

    Chapter  Google Scholar 

  32. Rahutomo, F., Kitasuka, T., Aritsugi, M.: Semantic cosine similarity. In: ICAST (2012)

    Google Scholar 

  33. Ramachandran, L., Gehringer, E.F.: Automated assessment of review quality using latent semantic analysis. In: ICALT. IEEE (2011)

    Google Scholar 

  34. Rist, C.B., Emmerichs, D., Enzweiler, M., Gavrila, D.M.: Semantic scene completion using local deep implicit functions on lidar data. IEEE Trans. Pattern Anal. Mach. Intell. 44(10), 7205–7218 (2021)

    Article  Google Scholar 

  35. Roldao, L., de Charette, R., Verroust-Blondet, A.: Lmscnet: lightweight multiscale 3d semantic completion. In: 3DV (2020)

    Google Scholar 

  36. Roldao, L., De Charette, R., Verroust-Blondet, A.: 3d semantic scene completion: a survey. Int. J. Comput. Vision 130(8), 1978–2005 (2022)

    Article  Google Scholar 

  37. Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Item-based collaborative filtering recommendation algorithms. In: WWW (2001)

    Google Scholar 

  38. Silberman, N., Hoiem, D., Kohli, P., Fergus, R.: Indoor segmentation and support inference from RGBD images. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7576, pp. 746–760. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33715-4_54

    Chapter  Google Scholar 

  39. Song, S., Yu, F., Zeng, A., Chang, A.X., Savva, M., Funkhouser, T.: Semantic scene completion from a single depth image. In: CVPR (2017)

    Google Scholar 

  40. Straub, J., et al.: The replica dataset: a digital replica of indoor spaces. arXiv preprint arXiv:1906.05797 (2019)

  41. Tan, M., Le, Q.: Efficientnet: rethinking model scaling for convolutional neural networks. In: ICML (2019)

    Google Scholar 

  42. Wang, F., Galliani, S., Vogel, C., Speciale, P., Pollefeys, M.: Patchmatchnet: learned multi-view patchmatch stereo. In: CVPR (2021)

    Google Scholar 

  43. Wang, X., et al.: Openoccupancy: a large scale benchmark for surrounding semantic occupancy perception. In: ICCV (2023)

    Google Scholar 

  44. Wang, Y., Wang, P., Yang, Z., Luo, C., Yang, Y., Xu, W.: Unos: unified unsupervised optical-flow and stereo-depth estimation by watching videos. In: CVPR (2019)

    Google Scholar 

  45. Watson, J., Mac Aodha, O., Prisacariu, V., Brostow, G., Firman, M.: The temporal opportunist: self-supervised multi-frame monocular depth. In: CVPR (2021)

    Google Scholar 

  46. Wei, Y., Zhao, L., Zheng, W., Zhu, Z., Zhou, J., Lu, J.: Surroundocc: multi-camera 3d occupancy prediction for autonomous driving. In: ICCV (2023)

    Google Scholar 

  47. Wu, S.C., Tateno, K., Navab, N., Tombari, F.: Scfusion: real-time incremental scene reconstruction with semantic completion. In: 3DV (2020)

    Google Scholar 

  48. Xia, P., Zhang, L., Li, F.: Learning similarity with cosine similarity ensemble. Inf. Sci. 307, 39–52 (2015)

    Article  MathSciNet  Google Scholar 

  49. Yan, X., et al.: Sparse single sweep lidar point cloud segmentation via learning contextual shape priors from scene completion. In: AAAI (2021)

    Google Scholar 

  50. Zhang, H., Shen, C., Li, Y., Cao, Y., Liu, Y., Yan, Y.: Exploiting temporal consistency for real-time video depth estimation. In: ICCV (2019)

    Google Scholar 

  51. Zhang, J., Zhao, H., Yao, A., Chen, Y., Zhang, L., Liao, H.: Efficient semantic scene completion network with spatial group convolution. In: ECCV (2018)

    Google Scholar 

  52. Zhang, Y., Zhu, Z., Du, D.: Occformer: dual-path transformer for vision-based 3d semantic occupancy prediction. In: ICCV (2023)

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by NSFC 62302246 and ZJNSFC under Grant LQ23F010008, and supported by High Performance Computing Center at Eastern Institute of Technology, Ningbo, and Ningbo Institute of Digital Twin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Jin .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 3141 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, B. et al. (2025). Hierarchical Temporal Context Learning for Camera-Based Semantic Scene Completion. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15062. Springer, Cham. https://doi.org/10.1007/978-3-031-73235-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-73235-5_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-73234-8

  • Online ISBN: 978-3-031-73235-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics