Abstract
Recent diffusion models have demonstrated impressive capabilities for text-based 2D image editing. Applying similar ideas to edit a NeRF scene [31] remains challenging as editing 2D frames individually does not produce multiview-consistent results. We make the key observation that the geometry of a NeRF scene provides a way to unify these 2D edits. We leverage this geometry in depth-conditioned ControlNet [57] to improve the consistency of individual 2D image edits. Furthermore, we propose an inpainting scheme that uses the NeRF scene depth to propagate 2D edits across images while staying robust to errors and resampling issues. We demonstrate that this leads to more consistent, realistic and detailed editing results compared to previous state-of-the-art text-based NeRF editing methods.
S. Rojas—Work done during an internship at Adobe Research.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
We use default diffusion parameters for Instruct-NeRF2NeRF, diverging from the original paper where the weights of classifier-free guidance were manually tuned.
References
Avrahami, O., Lischinski, D., Fried, O.: Blended diffusion for text-driven editing of natural images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 18208–18218 (2022)
Bao, C., et al.: Sine: semantic-driven image-based nerf editing with prior-guided editing field. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 20919–20929 (2023)
Barron, J.T., Mildenhall, B., Verbin, D., Srinivasan, P.P., Hedman, P.: MIP-nerf 360: unbounded anti-aliased neural radiance fields. In: CVPR (2022)
Bi, S., et al.: Neural reflectance fields for appearance acquisition (2020)
Brooks, T., Holynski, A., Efros, A.A.: Instructpix2pix: learning to follow image editing instructions. In: CVPR (2023)
Caron, M., et al.: Emerging properties in self-supervised vision transformers. In: Proceedings of the International Conference on Computer Vision (ICCV) (2021)
Chen, A., Xu, Z., Geiger, A., Yu, J., Su, H.: Tensorf: tensorial radiance fields. In: European Conference on Computer Vision (ECCV) (2022)
Chen, D.Z., Siddiqui, Y., Lee, H.Y., Tulyakov, S., Nießner, M.: Text2tex: text-driven texture synthesis via diffusion models. In: ICCV (2023)
Chen, R., Chen, Y., Jiao, N., Jia, K.: Fantasia3d: disentangling geometry and appearance for high-quality text-to-3D content creation. arXiv preprint arXiv:2303.13873 (2023)
Chiang, P.Z., Tsai, M.S., Tseng, H.Y., Lai, W.S., Chiu, W.C.: Stylizing 3D scene via implicit representation and hypernetwork. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 1475–1484 (2022)
Dong, J., Wang, Y.X.: VICA-nerf: view-consistency-aware 3D editing of neural radiance fields. In: Advances in Neural Information Processing Systems, vol. 36 (2024)
Gordon, O., Avrahami, O., Lischinski, D.: Blended-nerf: zero-shot object generation and blending in existing neural radiance fields. arXiv preprint arXiv:2306.12760 (2023)
Haque, A., Tancik, M., Efros, A.A., Holynski, A., Kanazawa, A.: Instruct-nerf2nerf: editing 3D scenes with instructions. arXiv preprint arXiv:2303.12789 (2023)
He, K., Sun, J., Tang, X.: Guided image filtering. IEEE Trans. Pattern Anal. Mach. Intell. 35(6), 1397–1409 (2012)
Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. arXiv preprint arxiv:2006.11239 (2020)
Huang, H.P., Tseng, H.Y., Saini, S., Singh, M., Yang, M.H.: Learning to stylize novel views. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 13869–13878 (2021)
Huang, Y.H., He, Y., Yuan, Y.J., Lai, Y.K., Gao, L.: Stylizednerf: consistent 3D scene stylization as stylized nerf via 2D-3D mutual learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 18342–18352 (2022)
Jaganathan, V., Huang, H.H., Irshad, M.Z., Jampani, V., Raj, A., Kira, Z.: ICE-G: image conditional editing of 3D gaussian splats (2024)
Jain, A., Mildenhall, B., Barron, J.T., Abbeel, P., Poole, B.: Zero-shot text-guided object generation with dream fields (2022)
Jambon, C., Kerbl, B., Kopanas, G., Diolatzis, S., Leimkühler, T., Drettakis, G.: Nerfshop: interactive editing of neural radiance fields. Proc. ACM Comput. Graph. Interact. Tech. 6(1) (2023). https://repo-sam.inria.fr/fungraph/nerfshop/
Kerr, J., Kim, C.M., Goldberg, K., Kanazawa, A., Tancik, M.: LERF: language embedded radiance fields. In: International Conference on Computer Vision (ICCV) (2023)
Kirillov, A., et al.: Segment anything. arXiv:2304.02643 (2023)
Kobayashi, S., Matsumoto, E., Sitzmann, V.: Decomposing nerf for editing via feature field distillation. In: Advances in Neural Information Processing Systems, vol. 35, pp. 23311–23330 (2022)
Kuang, Z., Luan, F., Bi, S., Shu, Z., Wetzstein, G., Sunkavalli, K.: Palettenerf: palette-based appearance editing of neural radiance fields. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 20691–20700 (2023)
Kuang, Z., Olszewski, K., Chai, M., Huang, Z., Achlioptas, P., Tulyakov, S.: Neroic: neural rendering of objects from online image collections. ACM Trans. Graph. 41(4) (2022)
Lin, C.H., et al.: Magic3d: high-resolution text-to-3D content creation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2023)
Liu, S., et al.: Grounding dino: marrying dino with grounded pre-training for open-set object detection. arXiv preprint arXiv:2303.05499 (2023)
Liu, S., Zhang, X., Zhang, Z., Zhang, R., Zhu, J.Y., Russell, B.: Editing conditional radiance fields. In: Proceedings of the International Conference on Computer Vision (ICCV) (2021)
Lugmayr, A., Danelljan, M., Romero, A., Yu, F., Timofte, R., Van Gool, L.: Repaint: inpainting using denoising diffusion probabilistic models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022)
Mikaeili, A., Perel, O., Safaee, M., Cohen-Or, D., Mahdavi-Amiri, A.: Sked: sketch-guided text-based 3D editing. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 14607–14619 (2023)
Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: Nerf: representing scenes as neural radiance fields for view synthesis. Commun. ACM 65(1), 99–106 (2021)
Mirzaei, A., et al.: SPIn-NeRF: multiview segmentation and perceptual inpainting with neural radiance fields. In: CVPR (2023)
Müller, T., Evans, A., Schied, C., Keller, A.: Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans. Graph. 41(4), 102:1–102:15 (2022)
Nguyen-Phuoc, T., Liu, F., Xiao, L.: Snerf: stylized neural implicit representations for 3D scenes. arXiv preprint arXiv:2207.02363 (2022)
Peng, Y., et al.: Cagenerf: cage-based neural radiance field for generalized 3D deformation and animation. In: Advances in Neural Information Processing Systems, vol. 35, pp. 31402–31415 (2022)
Poole, B., Jain, A., Barron, J.T., Mildenhall, B.: Dreamfusion: text-to-3D using 2D diffusion. In: ICLR (2023)
Radford, A., et al.: Learning transferable visual models from natural language supervision (2021)
Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., Chen, M.: Hierarchical text-conditional image generation with clip latents (2022)
Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: mixing datasets for zero-shot cross-dataset transfer. IEEE Trans. Pattern Anal. Mach. Intell. 44(3), 1623–1637 (2020)
Richardson, E., Metzer, G., Alaluf, Y., Giryes, R., Cohen-Or, D.: Texture: text-guided texturing of 3D shapes (2023)
Rojas, S., et al.: Re-rend: real-time rendering of nerfs across devices. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3632–3641 (2023)
Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution image synthesis with latent diffusion models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022)
Saharia, C., et al.: Photorealistic text-to-image diffusion models with deep language understanding. In: Advances in Neural Information Processing Systems (2022)
Sella, E., Fiebelman, G., Hedman, P., Averbuch-Elor, H.: Vox-e: text-guided voxel editing of 3D objects. In: Proceedings of the International Conference on Computer Vision (ICCV) (2023)
Tancik, M., et al.: Nerfstudio: a modular framework for neural radiance field development. In: ACM SIGGRAPH 2023 Conference Proceedings. SIGGRAPH 2023 (2023)
Wang, C., Chai, M., He, M., Chen, D., Liao, J.: Clip-nerf: text-and-image driven manipulation of neural radiance fields. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3835–3844 (2022)
Wang, C., Jiang, R., Chai, M., He, M., Chen, D., Liao, J.: Nerf-art: text-driven neural radiance fields stylization. IEEE Trans. Vis. Comput. Graph. (2023)
Wang, D., Zhang, T., Abboud, A., Süsstrunk, S.: Inpaintnerf360: text-guided 3D inpainting on unbounded neural radiance fields. arXiv preprint arXiv:2305.15094 (2023)
Wang, H., Du, X., Li, J., Yeh, R.A., Shakhnarovich, G.: Score jacobian chaining: lifting pretrained 2D diffusion models for 3D generation. In: CVPR (2023)
Wang, Z., et al.: Prolificdreamer: high-fidelity and diverse text-to-3D generation with variational score distillation. In: Advances in Neural Information Processing Systems (NeurIPS) (2023)
Wu, Q., et al.: Object-compositional neural implicit surfaces. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13687, pp. 197–213. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19812-0_12
Wu, Q., Wang, K., Li, K., Zheng, J., Cai, J.: Objectsdf++: improved object-compositional neural implicit surfaces. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 21764–21774 (2023)
Wu, Q., Tan, J., Xu, K.: Palettenerf: palette-based color editing for nerfs. arXiv preprint arXiv:2212.12871 (2022)
Yu, L., Xiang, W., Han, K.: Edit-diffnerf: editing 3D neural radiance fields using 2D diffusion model (2023)
Yuan, Y.J., Sun, Y.T., Lai, Y.K., Ma, Y., Jia, R., Gao, L.: Nerf-editing: geometry editing of neural radiance fields. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 18353–18364 (2022)
Zhang, K., et al.: ARF: artistic radiance fields. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13691, pp. 717–733. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19821-2_41
Zhang, L., Rao, A., Agrawala, M.: Adding conditional control to text-to-image diffusion models. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3836–3847 (2023)
Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: CVPR (2018)
Zhang, X., Srinivasan, P.P., Deng, B., Debevec, P., Freeman, W.T., Barron, J.T.: Nerfactor: neural factorization of shape and reflectance under an unknown illumination. ACM Trans. Graph. 40(6) (2021)
Zhuang, J., Wang, C., Liu, L., Lin, L., Li, G.: Dreameditor: text-driven 3D scene editing with neural fields. arXiv preprint arXiv:2306.13455 (2023)
Acknowledgements
We thank Duygu Ceylan for advice during the project. We thank anonymous ECCV reviewer 2 for their support and feedback on the paper. The research reported in this publication was partially supported by funding from KAUST Center of Excellence on GenAI, under award number 5940.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Rojas, S. et al. (2025). DATENeRF: Depth-Aware Text-Based Editing of NeRFs. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15069. Springer, Cham. https://doi.org/10.1007/978-3-031-73247-8_16
Download citation
DOI: https://doi.org/10.1007/978-3-031-73247-8_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-73246-1
Online ISBN: 978-3-031-73247-8
eBook Packages: Computer ScienceComputer Science (R0)