Abstract
In this paper, we explore the visual representations produced from a pre-trained text-to-video (T2V) diffusion model for video understanding tasks. We hypothesize that the latent representation learned from a pretrained generative T2V model encapsulates rich semantics and coherent temporal correspondences, thereby naturally facilitating video understanding. Our hypothesis is validated through the classic referring video object segmentation (R-VOS) task. We introduce a novel framework, termed “VD-IT”, tailored with dedicatedly designed components built upon a fixed pretrained T2V model. Specifically, VD-IT uses textual information as a conditional input, ensuring semantic consistency across time for precise temporal instance matching. It further incorporates image tokens as supplementary textual inputs, enriching the feature set to generate detailed and nuanced masks. Besides, instead of using the standard Gaussian noise, we propose to predict the video-specific noise with an extra noise prediction module, which can help preserve the feature fidelity and elevates segmentation quality. Through extensive experiments, we surprisingly observe that fixed generative T2V diffusion models, unlike commonly used video backbones (e.g., Video Swin Transformer) pretrained with discriminative image/video pre-tasks, exhibit better potential to maintain semantic alignment and temporal consistency. On existing standard benchmarks, our VD-IT achieves highly competitive results, surpassing many existing state-of-the-art methods. The code is available at https://github.com/buxiangzhiren/VD-IT.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Blattmann, A., et al.: Stable video diffusion: scaling latent video diffusion models to large datasets. arXiv preprint arXiv:2311.15127 (2023)
Blattmann, A., et al.: Align your latents: high-resolution video synthesis with latent diffusion models. In: CVPR, pp. 22563–22575 (2023)
Botach, A., Zheltonozhskii, E., Baskin, C.: End-to-end referring video object segmentation with multimodal transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4985–4995 (2022)
Chen, S., Sun, P., Song, Y., Luo, P.: Diffusiondet: diffusion model for object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 19830–19843 (2023)
Chen, W., et al.: Multi-attention network for compressed video referring object segmentation. In: ACM MM, pp. 4416–4425 (2022)
Chen, Z., Gao, R., Xiang, T.Z., Lin, F.: Diffusion model for camouflaged object detection. arXiv preprint arXiv:2308.00303 (2023)
Ding, H., Liu, C., Wang, S., Jiang, X.: VLT: vision-language transformer and query generation for referring segmentation. IEEE TPAMI (2022)
Ding, Z., Hui, T., Huang, J., Wei, X., Han, J., Liu, S.: Language-bridged spatial-temporal interaction for referring video object segmentation. In: CVPR, pp. 4964–4973 (2022)
Ding, Z., et al.: Progressive multimodal interaction network for referring video object segmentation. The 3rd Large-scale Video Object Segmentation Challenge 8 (2021)
Esser, P., Rombach, R., Ommer, B.: Taming transformers for high-resolution image synthesis. In: CVPR, pp. 12873–12883 (2021)
Fan, W.C., Chen, Y.C., Chen, D., Cheng, Y., Yuan, L., Wang, Y.C.F.: Frido: feature pyramid diffusion for complex scene image synthesis. In: Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI) (2023)
Gavrilyuk, K., Ghodrati, A., Li, Z., Snoek, C.G.: Actor and action video segmentation from a sentence. In: CVPR, pp. 5958–5966 (2018)
Gu, S., et al.: Vector quantized diffusion model for text-to-image synthesis. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2022) (2022)
Hu, R., Rohrbach, M., Darrell, T.: Segmentation from natural language expressions. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 108–124. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_7
Khoreva, A., Rohrbach, A., Schiele, B.: Video object segmentation with language referring expressions. In: Jawahar, C.V., Li, H., Mori, G., Schindler, K. (eds.) ACCV 2018. LNCS, vol. 11364, pp. 123–141. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20870-7_8
Kuhn, H.W.: The Hungarian method for the assignment problem. Naval Res. Logistics 52 (1955)
Li, D., et al.: You only infer once: Cross-modal meta-transfer for referring video object segmentation. In: AAAI, pp. 1297–1305 (2022)
Li, M., Sigal, L.: Referring transformer: a one-step approach to multi-task visual grounding. NeurIPS 34, 19652–19664 (2021)
Li, X., Sun, X., Meng, Y., Liang, J., Wu, F., Li, J.: Dice loss for data-imbalanced NLP tasks. arXiv preprint arXiv:1911.02855 (2019)
Li, Z., Zhou, Q., Zhang, X., Zhang, Y., Wang, Y., Xie, W.: Open-vocabulary object segmentation with diffusion models. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 7667–7676 (2023)
Li, Z., Wang, M., Mei, J., Liu, Y.: MaIL: a unified mask-image-language trimodal network for referring image segmentation. arXiv preprint arXiv:2111.10747 (2021)
Liang, C., Wu, Y., Luo, Y., Yang, Y.: Clawcranenet: leveraging object-level relation for text-based video segmentation. arXiv preprint arXiv:2103.10702 (2021)
Liang, C., et al.: Rethinking cross-modal interaction from a top-down perspective for referring video object segmentation. arXiv preprint arXiv:2106.01061 (2021)
Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: ICCV, pp. 2980–2988 (2017)
Liu, S., Hui, T., Huang, S., Wei, Y., Li, B., Li, G.: Cross-modal progressive comprehension for referring segmentation. IEEE TPAMI 44(9), 4761–4775 (2021)
Liu, Y., et al.: Roberta: a robustly optimized Bert pretraining approach. arXiv preprint arXiv:1907.11692 (2019)
Liu, Z., et al.: Video swin transformer. In: CVPR, pp. 3202–3211 (2022)
Mei, J., Piergiovanni, A., Hwang, J.N., Li, W.: SLVP: self-supervised language-video pre-training for referring video object segmentation. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 507–517 (2024)
Miao, B., Bennamoun, M., Gao, Y., Mian, A.: Spectrum-guided multi-granularity referring video object segmentation. In: ICCV, pp. 920–930 (2023)
Molad, E., et al.: Dreamix: video diffusion models are general video editors. arXiv preprint arXiv:2302.01329 (2023)
Park, H., Yoo, J., Jeong, S., Venkatesh, G., Kwak, N.: Learning dynamic network using a reuse gate function in semi-supervised video object segmentation. In: CVPR, pp. 8405–8414 (2021)
Pnvr, K., Singh, B., Ghosh, P., Siddiquie, B., Jacobs, D.: LD-ZNet: a latent diffusion approach for text-based image segmentation. In: ICCV, pp. 4157–4168 (2023)
Radford, A., et al.: Learning transferable visual models from natural language supervision. In: ICML, pp. 8748–8763. PMLR (2021)
Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., Chen, M.: Hierarchical text-conditional image generation with clip latents. arXiv preprint arXiv:2204.061251(2), 3 (2022)
Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: a metric and a loss for bounding box regression. In: CVPR, pp. 658–666 (2019)
Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution image synthesis with latent diffusion models. In: CVPR, pp. 10684–10695 (2022)
Saharia, C., et al.: Palette: image-to-image diffusion models. In: ACM SIGGRAPH, pp. 1–10 (2022)
Seo, S., Lee, J.-Y., Han, B.: URVOS: unified referring video object segmentation network with a large-scale benchmark. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12360, pp. 208–223. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58555-6_13
Tur, A.O., Dall’Asen, N., Beyan, C., Ricci, E.: Exploring diffusion models for unsupervised video anomaly detection. In: ICIP, pp. 2540–2544. IEEE (2023)
Vaswani, A., et al.: Attention is all you need. NeurIPS 30 (2017)
Wang, H., Deng, C., Yan, J., Tao, D.: Asymmetric cross-guided attention network for actor and action video segmentation from natural language query. In: ICCV, pp. 3939–3948 (2019)
Wang, J., Yuan, H., Chen, D., Zhang, Y., Wang, X., Zhang, S.: Modelscope text-to-video technical report. arXiv preprint arXiv:2308.06571 (2023)
Wang, W., et al.: Semantic image synthesis via diffusion models. arXiv preprint arXiv:2207.00050 (2022)
Wang, Z., et al.: CRIS: clip-driven referring image segmentation. In: CVPR, pp. 11686–11695 (2022)
Wu, D., Dong, X., Shao, L., Shen, J.: Multi-level representation learning with semantic alignment for referring video object segmentation. In: CVPR, pp. 4996–5005 (2022)
Wu, D., Wang, T., Zhang, Y., Zhang, X., Shen, J.: Onlinerefer: a simple online baseline for referring video object segmentation. In: ICCV, pp. 2761–2770 (2023)
Wu, J., Jiang, Y., Sun, P., Yuan, Z., Luo, P.: Language as queries for referring video object segmentation. In: CVPR, pp. 4974–4984 (2022)
Wu, W., Zhao, Y., Shou, M.Z., Zhou, H., Shen, C.: Diffumask: synthesizing images with pixel-level annotations for semantic segmentation using diffusion models. arXiv preprint arXiv:2303.11681 (2023)
Xu, J., Liu, S., Vahdat, A., Byeon, W., Wang, X., De Mello, S.: Open-vocabulary panoptic segmentation with text-to-image diffusion models. In: CVPR, pp. 2955–2966 (2023)
Yang, Z., Wang, J., Tang, Y., Chen, K., Zhao, H., Torr, P.H.: LAVT: language-aware vision transformer for referring image segmentation. In: CVPR, pp. 18155–18165 (2022)
Ye, L., Rochan, M., Liu, Z., Wang, Y.: Cross-modal self-attention network for referring image segmentation. In: CVPR, pp. 10502–10511 (2019)
Yu, L., Poirson, P., Yang, S., Berg, A.C., Berg, T.L.: Modeling context in referring expressions. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 69–85. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_5
Zhang, J., et al.: A tale of two features: stable diffusion complements dino for zero-shot semantic correspondence. NeurIPS 36 (2024)
Zhao, H., Lin, K.Q., Yan, R., Li, Z.: Diffusionvmr: diffusion model for video moment retrieval. arXiv preprint arXiv:2308.15109 (2023)
Zhao, S., et al.: Uni-controlnet: all-in-one control to text-to-image diffusion models. In: Thirty-Seventh Conference on Neural Information Processing Systems (NeurIPS 2023) (2023)
Zhou, D., Wang, W., Yan, H., Lv, W., Zhu, Y., Feng, J.: Magicvideo: efficient video generation with latent diffusion models. arXiv preprint arXiv:2211.11018 (2022)
Zhu, W., Li, J., Lu, J., Zhou, J.: Separable structure modeling for semi-supervised video object segmentation. IEEE TCSVT 32(1), 330–344 (2021)
Zhu, X., Su, W., Lu, L., Li, B., Wang, X., Dai, J.: Deformable DETR: deformable transformers for end-to-end object detection. arXiv preprint arXiv:2010.04159 (2020)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Zhu, Z., Feng, X., Chen, D., Yuan, J., Qiao, C., Hua, G. (2025). Exploring Pre-trained Text-to-Video Diffusion Models for Referring Video Object Segmentation. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15070. Springer, Cham. https://doi.org/10.1007/978-3-031-73254-6_26
Download citation
DOI: https://doi.org/10.1007/978-3-031-73254-6_26
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-73253-9
Online ISBN: 978-3-031-73254-6
eBook Packages: Computer ScienceComputer Science (R0)