Abstract
Recent advances in neural rendering have enabled highly photorealistic 3D scene reconstruction and novel view synthesis. Despite this progress, current state-of-the-art methods struggle to reconstruct high frequency detail, due to factors such as a low-frequency bias of radiance fields and inaccurate camera calibration. One approach to mitigate this issue is to enhance images post-rendering. 2D enhancers can be pre-trained to recover some detail but are agnostic to scene geometry and do not easily generalize to new distributions of image degradation. Conversely, existing 3D enhancers are able to transfer detail from nearby training images in a generalizable manner, but suffer from inaccurate camera calibration and can propagate errors from the geometry into rendered images. We propose a neural rendering enhancer, RoGUENeRF, which exploits the best of both paradigms. Our method is pre-trained to learn a general enhancer while also leveraging information from nearby training images via robust 3D alignment and geometry-aware fusion. Our approach restores high-frequency textures while maintaining geometric consistency and is also robust to inaccurate camera calibration. We show that RoGUENeRF substantially enhances the rendering quality of a wide range of neural rendering baselines, e.g. improving the PSNR of MipNeRF360 by 0.63dB and Nerfacto by 1.34dB on the real world 360v2 dataset. Project page: https://sib1.github.io/projects/roguenerf/.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aittala, M., Durand, F.: Burst image deblurring using permutation invariant convolutional neural networks. In: ECCV (2018)
Barron, J.T., Mildenhall, B., Tancik, M., Hedman, P., Martin-Brualla, R., Srinivasan, P.P.: Mip-NeRF: a multiscale representation for anti-aliasing neural radiance fields. In: ICCV, pp. 5835–5844 (2021)
Barron, J.T., Mildenhall, B., Verbin, D., Srinivasan, P.P., Hedman, P.: Mip-NeRF 360: unbounded anti-aliased neural radiance fields. In: CVPR (2022)
Barron, J.T., Mildenhall, B., Verbin, D., Srinivasan, P.P., Hedman, P.: Zip-NeRF: anti-aliased grid-based neural radiance fields. In: ICCV (2023)
Bian, W., Wang, Z., Li, K., Bian, J.W., Prisacariu, V.A.: Nope-NeRF: optimising neural radiance field with no pose prior. In: CVPR, pp. 4160–4169 (2023)
Catley-Chandar, S., Tanay, T., Vandroux, L., Leonardis, A., Slabaugh, G., Pérez-Pellitero, E.: FlexHDR: modeling alignment and exposure uncertainties for flexible HDR imaging. IEEE TIP 31 (2022)
Chen, A., Xu, Z., Geiger, A., Yu, J., Su, H.: TensoRF: tensorial radiance fields. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13692, pp. 333–350. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19824-3_20
Dhamo, H., et al.: HeadGaS: real-time animatable head avatars via 3D gaussian splatting. arXiv preprint arXiv:2312.02902 (2023)
Huang, X., Li, W., Hu, J., Chen, H., Wang, Y.: RefSR-NeRF: towards high fidelity and super resolution view synthesis. In: CVPR, pp. 8244–8253. IEEE Computer Society, Los Alamitos (2023)
Işık, M., et al.: HumanRF: high-fidelity neural radiance fields for humans in motion. ACM TOG 42(4), 1–12 (2023)
Jensen, R., Dahl, A., Vogiatzis, G., Tola, E., Aanæs, H.: Large scale multi-view stereopsis evaluation. In: CVPR, pp. 406–413. IEEE (2014)
Jiang, Y., et al.: AligNeRF: high-fidelity neural radiance fields via alignment-aware training. In: CVPR, pp. 46–55 (2023)
Kalantari, N.K., Ramamoorthi, R.: Deep HDR video from sequences with alternating exposures. Comput. Graph. Forum (2019)
Ke, J., Wang, Q., Wang, Y., Milanfar, P., Yang, F.: MUSIQ: multi-scale image quality transformer. In: ICCV, pp. 5148–5157 (2021)
Kingma, D., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (2015)
Li, T., Slavcheva, M., et al.: Neural 3D video synthesis from multi-view video. In: CVPR, pp. 5511–5521 (2021)
Lin, C.H., Ma, W.C., Torralba, A., Lucey, S.: BARF: bundle-adjusting neural radiance fields. In: ICCV (2021)
Liu, Y.L., et al.: Robust dynamic radiance fields. In: CVPR (2023)
Maintainers, T., Contributors: TorchVision: PyTorch’s Computer Vision library (2016)
Meuleman, A., et al.: Progressively optimized local radiance fields for robust view synthesis. In: CVPR, pp. 16539–16548 (2023)
Mildenhall, B., Hedman, P., Martin-Brualla, R., Srinivasan, P.P., Barron, J.T.: NeRF in the dark: high dynamic range view synthesis from noisy raw images. In: CVPR (2022)
Mildenhall, B., et al.: Local light field fusion: Practical view synthesis with prescriptive sampling guidelines. ACM TOG (2019)
Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: NeRF: representing scenes as neural radiance fields for view synthesis. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 405–421. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_24
Moreau, A., Piasco, N., Tsishkou, D.V., Stanciulescu, B., de La Fortelle, A.: LENS: localization enhanced by nerf synthesis. In: Conference on Robot Learning (2021)
Moreau, A., Song, J., Dhamo, H., Shaw, R., Zhou, Y., Pérez-Pellitero, E.: Human gaussian splatting: Real-time rendering of animatable avatars. In: CVPR (2024)
Müller, T., Evans, A., Schied, C., Keller, A.: Instant neural graphics primitives with a multiresolution hash encoding. ACM TOG 41(4) (2022)
Niemeyer, M., Geiger, A.: GIRAFFE: representing scenes as compositional generative neural feature fields. In: CVPR (2021)
Park, K., Henzler, P., Mildenhall, B., Barron, J.T., Martin-Brualla, R.: CamP: camera preconditioning for neural radiance fields. ACM Trans. Graph. (2023)
Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d’Alché Buc, F., Fox, E., Garnett, R. (eds.) NeurIPS, pp. 8024–8035. Curran Associates, Inc. (2019)
Peng, S., et al.: Animatable neural radiance fields for modeling dynamic human bodies. In: ICCV (2021)
Peng, S., Yan, Y., Shuai, Q., Bao, H., Zhou, X.: Representing volumetric videos as dynamic MLP maps. In: CVPR (2023)
Pumarola, A., Corona, E., Pons-Moll, G., Moreno-Noguer, F.: D-NeRF: neural radiance fields for dynamic scenes. In: CVPR (2020)
Raoult, V., Reid-Anderson, S., Ferri, A., Williamson, J.E.: How reliable is structure from motion (SfM) over time and between observers? A case study using coral reef bommies. Remote Sens. 9(7) (2017)
Roessle, B., Müller, N., Porzi, L., Bulò, S.R., Kontschieder, P., Nießner, M.: GANeRF: leveraging discriminators to optimize neural radiance fields. ACM TOG (2023)
Rong, X., Huang, J.B., Saraf, A., Kim, C., Kopf, J.: Boosting view synthesis with residual transfer. In: CVPR (2022)
Fridovich-Keil, S., Yu, A., Tancik, M., Chen, Q., Recht, B., Kanazawa, A.: Plenoxels: radiance fields without neural networks. In: CVPR (2022)
Schönberger, J.L., Frahm, J.M.: Structure-from-motion revisited. In: CVPR (2016)
Schönberger, J.L., Zheng, E., Frahm, J.-M., Pollefeys, M.: Pixelwise view selection for unstructured multi-view stereo. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 501–518. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_31
Shaw, R., et al.: SWAGS: sampling windows adaptively for dynamic 3D gaussian splatting. arXiv preprint arXiv:2312.13308 (2023)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: ICLR (2015)
Tanay, T., Leonardis, A., Maggioni, M.: Efficient view synthesis and 3D-based multi-frame denoising with multiplane feature representations. In: CVPR (2023)
Tanay, T., Maggioni, M.: Global latent neural rendering. In: CVPR (2024)
Tancik, M., et al.: Fourier features let networks learn high frequency functions in low dimensional domains. In: NeurIPS (2020)
Tancik, M., et al.: NeRFStudio: a modular framework for neural radiance field development. In: ACM SIGGRAPH 2023 Conference Proceedings. SIGGRAPH 2023 (2023)
Truong, P., Rakotosaona, M.J., Manhardt, F., Tombari, F.: SPARF: neural radiance fields from sparse and noisy poses. In: CVPR, pp. 4190–4200 (2023)
Turki, H., et al.: HybridNeRF: efficient neural rendering via adaptive volumetric surfaces. In: Computer Vision and Pattern Recognition (CVPR) (2024)
Verbin, D., Hedman, P., Mildenhall, B., Zickler, T., Barron, J.T., Srinivasan, P.P.: Ref-NeRF: structured view-dependent appearance for neural radiance fields. In: CVPR (2022)
Wang, C., Chai, M., He, M., Chen, D., Liao, J.: CLIP-NeRF: text-and-image driven manipulation of neural radiance fields. In: CVPR, pp. 3835–3844 (2022)
Wang, C., Wu, X., Guo, Y.C., Zhang, S.H., Tai, Y.W., Hu, S.M.: NeRF-SR: high quality neural radiance fields using supersampling. In: ACM MM, MM 2022, pp. 6445–6454. Association for Computing Machinery, New York (2022)
Wang, Y., Han, Q., Habermann, M., Daniilidis, K., Theobalt, C., Liu, L.: NeuS2: fast learning of neural implicit surfaces for multi-view reconstruction. In: ICCV (2023)
Wang, Z., Cun, X., Bao, J., Zhou, W., Liu, J., Li, H.: UFormer: a general U-shaped transformer for image restoration. In: CVPR, pp. 17683–17693 (2022)
Wang, Z., Bovik, A., Sheikh, H., Simoncelli, E.: Image quality assessment: from error visibility to structural similarity. IEEE TIP 13(4), 600–612 (2004)
Xie, Y., et al.: Neural fields in visual computing and beyond. Comput. Graph. Forum (2022)
Xu, L., et al.: VR-NeRF: high-fidelity virtualized walkable spaces. In: SIGGRAPH Asia Conference Proceedings (2023)
Yan, Q., et al.: Attention-guided network for ghost-free high dynamic range imaging. In: CVPR, pp. 1751–1760 (2019)
Yu, A., Li, R., Tancik, M., Li, H., Ng, R., Kanazawa, A.: PlenOctrees for real-time rendering of neural radiance fields. In: ICCV (2021)
Zhang, K., Riegler, G., Snavely, N., Koltun, V.: NeRF++: analyzing and improving neural radiance fields. arXiv:2010.07492v2 (2020)
Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: CVPR, pp. 586–595 (2018)
Zhou, K., Li, W., Jiang, N., Han, X., Lu, J.: From NeRFLiX to NeRFLiX++: a general nerf-agnostic restorer paradigm. IEEE TPAMI 1–17 (2023)
Zhou, K., et al.: NeRFLiX: high-quality neural view synthesis by learning a degradation-driven inter-viewpoint mixer. In: CVPR, pp. 12363–12374 (2023)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Catley-Chandar, S., Shaw, R., Slabaugh, G., Pérez-Pellitero, E. (2025). RoGUENeRF: A Robust Geometry-Consistent Universal Enhancer for NeRF. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15070. Springer, Cham. https://doi.org/10.1007/978-3-031-73254-6_4
Download citation
DOI: https://doi.org/10.1007/978-3-031-73254-6_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-73253-9
Online ISBN: 978-3-031-73254-6
eBook Packages: Computer ScienceComputer Science (R0)