Skip to main content

Fetal Body Parts Segmentation Using Volumetric MRI Reconstructions

  • Conference paper
  • First Online:
Perinatal, Preterm and Paediatric Image Analysis (PIPPI 2024)

Abstract

Fetal body parts segmentation can be useful to detect abnormalities and assess fetal growth from magnetic resonance imaging (MRI). In this work, 3D fetal head, trunk and limbs body parts segmentation is leveraged for the first time by volumetric reconstructions of the whole fetal anatomy coupled to deep learning techniques for volumetric segmentation. Due to the time consuming manual segmentation required for training in this volumetric multi-label setting, sparse annotations are used, marking slices with a \(6\,\text {mm}\) separation and alternating the slicing axis between cases. These manual segmentations are used to train and compare different models using both the original MRI data and the data after volumetric reconstruction in a dataset of 45 cases. The setup consisting on 3D volumetric reconstructions and a 3D U-net based learning model results in optimal segmentation metrics, with Dice scores higher than 0.9 for all the considered structures and 0.973 for the fetal body (0.979 when highly motion corrupted datasets are discarded). In comparison, the performance of the setups that use the original MRI data exhibit a pronounced decline in segmentation scores, highlighting the importance of robust reconstruction techniques for automatic fetal growth characterization. Finally, we conduct a Bland-Altman analysis studying the reliability of our proposed 3D reconstruction and segmentation pipeline for automatic estimation of fetal body part weights.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Papaioannou, G., Caro-Domínguez, P., Klein, W.M., Garel, C., Cassart, M.: Indications for magnetic resonance imaging of the fetal body (extra-central nervous system): recommendations from the European Society of Paediatric Radiology Fetal Task Force. Pediatr. Radiol. 53(2), 297–312 (2023). https://doi.org/10.1007/s00247-022-05495-4

    Article  Google Scholar 

  2. Wilson, L., Whitby, E.H.: The value of fetal magnetic resonance imaging in diagnosis of congenital anomalies of the fetal body: a systematic review and meta-analysis. BMC Med. Imag. 24(1) (2024). https://doi.org/10.1186/s12880-024-01286-5

  3. Uus, A., et al.: Deformable slice-to-volume registration for motion correction of fetal body and placenta MRI. IEEE Trans. Med. Imaging 39(9), 2750–2759 (2020). https://doi.org/10.1109/tmi.2020.2974844

    Article  Google Scholar 

  4. Mufti, N., et al.: Use of super resolution reconstruction MRI for surgical planning in Placenta accreta spectrum disorder: case series. Placenta 142, 36–45 (2023). https://doi.org/10.1016/j.placenta.2023.08.066

    Article  Google Scholar 

  5. Cordero-Grande, L., et al.: Fetal MRI by robust deep generative prior reconstruction and diffeomorphic registration. IEEE Trans. Med. Imaging 42(3), 810–822 (2023). https://doi.org/10.1109/tmi.2022.3217725

    Article  Google Scholar 

  6. Uus, A.U., et al.: Automated body organ segmentation, volumetry and population-averaged atlas for 3D motion-corrected T2-weighted fetal body MRI. Sci. Rep. 14(1) (2024). https://doi.org/10.1038/s41598-024-57087-x

  7. Ryd, D., Nilsson, A., Heiberg, E., Hedström, E.: Automatic segmentation of the fetus in 3D magnetic resonance images using deep learning: accurate and fast fetal volume quantification for clinical use. Pediatr. Cardiol. 44(6), 1311–1318 (2023). https://doi.org/10.1007/s00246-022-03038-0

    Article  Google Scholar 

  8. Specktor-Fadida, B., et al.: Deep learning-based segmentation of whole-body fetal MRI and fetal weight estimation: assessing performance, repeatability, and reproducibility. Eur. Radiol. 34(3), 2072–2083 (2024). https://doi.org/10.1007/s00330-023-10038-y

    Article  Google Scholar 

  9. Rabinowich, A., et al.: Fetal MRI-based body and adiposity quantification for small for gestational age perinatal risk stratification. J. Magn. Reson. Imaging 60(2), 767–774 (2024). https://doi.org/10.1002/jmri.29141

    Article  Google Scholar 

  10. Hall, M., et al.: Adrenal volumes in fetuses delivering prior to 32.weeks’ gestation: an MRI pilot study. Acta Obstetricia et Gynecologica Scandinavica 103(3), 512–521 (2024). https://doi.org/10.1111/aogs.14733

  11. Zhang, T., et al.: Graph-based whole body segmentation in fetal MR images. In: MICCAI Workshop PIPPI (2016). https://pippiworkshop.github.io/pippi2016/pdf/PIPPI2016_04_Zhang.pdf

  12. Kulseng, C.P.S., Hillestad, V., Eskild, A., Gjesdal, K.I.: Automatic placental and fetal volume estimation by a convolutional neural network. Placenta 134, 23–29 (2023). https://doi.org/10.1016/j.placenta.2023.02.009

    Article  Google Scholar 

  13. Dudovitch, G., Link-Sourani, D., Ben Sira, L., Miller, E., Ben Bashat, D., Joskowicz, L.: Deep learning automatic fetal structures segmentation in MRI scans with few annotated datasets. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12266, pp. 365–374. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59725-2_35

    Chapter  Google Scholar 

  14. Lo, J., et al.: Cross attention squeeze excitation network (CASE-Net) for whole body fetal MRI segmentation. Sensors 21(13) (2021). https://doi.org/10.3390/s21134490

  15. Fadida, B.S., Sourani, D.L., Sira, L.B., Miller, E., Bashat, D.B., Joskowicz, L.: Partial annotations for the segmentation of large structures with low annotation cost. In: Zamzmi, G., Antani, S., Bagci, U., Linguraru, M.G., Rajaraman, S., Xue, Z. (eds.) MILLanD 2022. LNCS, vol. 13559, pp. 13–22. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16760-7_2

    Chapter  Google Scholar 

  16. iFIND: Intelligent fetal imaging and diagnosis. http://www.ifindproject.com

  17. Isensee, F., Jaeger, P.F., Kohl, S.A.A., Petersen, J., Maier-Hein, K.H.: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18(2), 203–211 (2021). https://doi.org/10.1038/s41592-020-01008-z

    Article  Google Scholar 

  18. Isensee, F., et al.: nnU-Net revisited: a call for rigorous validation in 3D medical image segmentation (2024). https://doi.org/10.48550/arXiv.2404.09556

  19. Baker, P., et al.: Fetal weight estimation by echo-planar magnetic resonance imaging. Lancet 343(8898), 644–645 (1994). https://doi.org/10.1016/s0140-6736(94)92638-7

    Article  Google Scholar 

  20. Liu, R., et al.: An intriguing failing of convolutional neural networks and the CoordConv solution, July 2018. https://doi.org/10.48550/arXiv.1807.03247

Download references

Acknowledgments

This work was supported in part by MCIN, Spain, under the Beatriz Galindo Program (BGP18/00178) and the STEP-AMD project (TED2021-1319518-I00); in part by MCIN/AEI/10.13039/5011000110 33/FEDER, EU, under Projects PID2021-129022OA-I00 and PID2022-141493OB-I00; and in part by the Madrid Government, Spain, under the Multiannual Agreement with Universidad Politécnica de Madrid in the line support for Research and Development Projects for Beatriz Galindo Researchers, in the context of V PRICIT. The authors gratefully acknowledge the Universidad Politécnica de Madrid for providing computing resources on Magerit Supercomputer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Pablo Alarcón-Gil .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Alarcón-Gil, P.P., Alfano, F., Uus, A., Ledesma-Carbayo, M.J., Cordero-Grande, L. (2025). Fetal Body Parts Segmentation Using Volumetric MRI Reconstructions. In: Link-Sourani, D., Abaci Turk, E., Macgowan, C., Hutter, J., Melbourne, A., Licandro, R. (eds) Perinatal, Preterm and Paediatric Image Analysis. PIPPI 2024. Lecture Notes in Computer Science, vol 14747. Springer, Cham. https://doi.org/10.1007/978-3-031-73260-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-73260-7_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-73259-1

  • Online ISBN: 978-3-031-73260-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics