Abstract
Automatic fetal brain parcellation on Magnetic Resonance (MR) images is increasingly being used to assess prenatal brain growth and development. Despite their progress, existing methods are limited due to ignoring of the hierarchical nature of segmentation labels and the rich complementary information among hierarchical labels. To address these limitations, we propose a novel deep-learning model to segment the whole fetal brain into 87 fine-grained regions hierarchically. Specifically, we design a hierarchical network with adjustable levels and define a three-level structure. These levels are dedicated, respectively, to predicting 8 types of brain tissues, 36 more detailed brain regions, and ultimately 87 brain regions according to developing Human Connectome Project (dHCP) labels. The coarse-level network is capable of providing prior features to the fine-level network for fine-grained brain parcellation. This design involves decomposing complex problems into simpler ones and addresses intricate issues with the priors for resolving simple problems. Furthermore, we design a data augmentation module to simulate variations in scanning parameters, enabling precise segmentation of fetal brain images across diverse domains. Finally, we integrate this data augmentation module into a semi-supervised paradigm to alleviate the shortage of high-quality labeled data and enhance the generalizability of our model. Thanks to these designs, our model can obtain fine-grained and multi-scale brain segmentation with high robustness to variations in MR scanners and imaging protocols. Extensive experiments on 558 dHCP and 176 fetal brain MR images demonstrate that our model achieves state-of-the-art segmentation performance across multi-site datasets. Our code is publicly available at https://github.com/sj-huang/HieraParceNet.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Avants, B.B., Tustison, N., Song, G., et al.: Advanced normalization tools (ants). Insight J. 2(365), 1–35 (2009)
Billot, B., et al.: Synthseg: segmentation of brain MRI scans of any contrast and resolution without retraining. Med. Image Anal. 86, 102789–102789 (2021)
Cardoso, M.J., et al.: Monai: an open-source framework for deep learning in healthcare. ArXiv arxiv:2211.02701 (2022)
Dey, N., et al.: Anystar: domain randomized universal star-convex 3d instance segmentation. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 7593–7603 (2024)
Dou, H., et al.: A deep attentive convolutional neural network for automatic cortical plate segmentation in fetal MRI. IEEE Trans. Med. Imaging 40, 1123–1133 (2020)
Dou, Q., et al.: 3d deeply supervised network for automated segmentation of volumetric medical images. Med. Image Anal. 41, 40–54 (2017)
de Dumast, P., Kebiri, H., Atat, C., Dunet, V., Koob, M., Cuadra, M.B.: Segmentation of the cortical plate in fetal brain MRI with a topological loss. In: Sudre, C.H., et al. (eds.) UNSURE/PIPPI -2021. LNCS, vol. 12959, pp. 200–209. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87735-4_19
Fidon, L., et al.: Label-set loss functions for partial supervision: application to fetal brain 3D MRI parcellation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12902, pp. 647–657. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87196-3_60
Fidon, L., et al.: Distributionally robust segmentation of abnormal fetal brain 3d mri. ArXiv arxiv:2108.04175 (2021)
Gholipour, A., et al.: A normative spatiotemporal mri atlas of the fetal brain for automatic segmentation and analysis of early brain growth. Sci. Rep. 7 (2017)
Hatamizadeh, A., Yang, D., Roth, H.R., Xu, D.: Unetr: transformers for 3d medical image segmentation. In: 2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), pp. 1748–1758 (2021)
Huang, G., Chen, D., Li, T., Wu, F., van der Maaten, L., Weinberger, K.Q.: Multi-scale dense networks for resource efficient image classification. In: International Conference on Learning Representations (2017)
Huang, H., et al.: Unet 3+: a full-scale connected unet for medical image segmentation. In: ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1055–1059 (2020)
Iglesias, J.E., et al.: Synthsr: a public AI tool to turn heterogeneous clinical brain scans into high-resolution t1-weighted images for 3d morphometry. Sci. Adv. 9(5), eadd3607 (2023)
Isensee, F., Jaeger, P.F., Kohl, S.A.A., Petersen, J., Maier-Hein, K.: nnu-net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18, 203–211 (2020)
Karimi, D., Rollins, C.K., Velasco-Annis, C., Ouaalam, A., Gholipour, A.: Learning to segment fetal brain tissue from noisy annotations. Med. Image Anal. 85, 102731 (2022)
Li, L., et al.: Fetal cortex segmentation with topology and thickness loss constraints. In: Baxter, J.S.H., et al. (eds.) EPIMI/ML-CDS@MICCAI, pp. 123–133. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-23223-7_11
Li, L., et al.: CAS-net: conditional atlas generation and brain segmentation for fetal MRI. In: Sudre, C.H., et al. (eds.) UNSURE/PIPPI -2021. LNCS, vol. 12959, pp. 221–230. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87735-4_21
Machado-Rivas, F., et al.: Normal growth, sexual dimorphism, and lateral asymmetries at fetal brain MRI. Radiology, 211222 (2021)
Makropoulos, A., et al.: Automatic whole brain MRI segmentation of the developing neonatal brain. IEEE Trans. Med. Imaging 33, 1818–1831 (2014)
Payette, K., et al.: An automatic multi-tissue human fetal brain segmentation benchmark using the fetal tissue annotation dataset. Sci. Data 8 (2020)
Pei, Y., et al.: Learning spatiotemporal probabilistic atlas of fetal brains with anatomically constrained registration network. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12907, pp. 239–248. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87234-2_23
Rutherford, M., et al.: Mr imaging methods for assessing fetal brain development. Dev. Neurobiol. 68 (2008)
Sm, C.K.R.M., et al.: Regional brain growth trajectories in fetuses with congenital heart disease. Ann. Neurol. 89 (2020)
Vasung, L., et al.: Abnormal development of transient fetal zones in mild isolated fetal ventriculomegaly. Cerebral cortex (2022)
Xu, X., et al.: Spatiotemporal atlas of the fetal brain depicts cortical developmental gradient. J. Neurosci. 42, 9435–9449 (2022)
Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49
Acknowledgments
This work was supported in part by National Natural Science Foundation of China (No. 62131015, 62250710165, 62203355, and U23A20295), the STI 2030-Major Projects (No. 2022ZD0209000), Shanghai Municipal Central Guided Local Science and Technology Development Fund (No. YDZX20233100001001), and The Key R&D Program of Guangdong Province, China (No. 2023B0303040001 and 2021B0101420006).
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Ethics declarations
Disclosure of Interests
The authors have no competing interests to declare that are relevant to the content of this article.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Huang, S. et al. (2025). Towards Accurate Fetal Brain Parcellation via Hierarchical Network and Loss. In: Link-Sourani, D., Abaci Turk, E., Macgowan, C., Hutter, J., Melbourne, A., Licandro, R. (eds) Perinatal, Preterm and Paediatric Image Analysis. PIPPI 2024. Lecture Notes in Computer Science, vol 14747. Springer, Cham. https://doi.org/10.1007/978-3-031-73260-7_7
Download citation
DOI: https://doi.org/10.1007/978-3-031-73260-7_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-73259-1
Online ISBN: 978-3-031-73260-7
eBook Packages: Computer ScienceComputer Science (R0)