Skip to main content

Towards Accurate Fetal Brain Parcellation via Hierarchical Network and Loss

  • Conference paper
  • First Online:
Perinatal, Preterm and Paediatric Image Analysis (PIPPI 2024)

Abstract

Automatic fetal brain parcellation on Magnetic Resonance (MR) images is increasingly being used to assess prenatal brain growth and development. Despite their progress, existing methods are limited due to ignoring of the hierarchical nature of segmentation labels and the rich complementary information among hierarchical labels. To address these limitations, we propose a novel deep-learning model to segment the whole fetal brain into 87 fine-grained regions hierarchically. Specifically, we design a hierarchical network with adjustable levels and define a three-level structure. These levels are dedicated, respectively, to predicting 8 types of brain tissues, 36 more detailed brain regions, and ultimately 87 brain regions according to developing Human Connectome Project (dHCP) labels. The coarse-level network is capable of providing prior features to the fine-level network for fine-grained brain parcellation. This design involves decomposing complex problems into simpler ones and addresses intricate issues with the priors for resolving simple problems. Furthermore, we design a data augmentation module to simulate variations in scanning parameters, enabling precise segmentation of fetal brain images across diverse domains. Finally, we integrate this data augmentation module into a semi-supervised paradigm to alleviate the shortage of high-quality labeled data and enhance the generalizability of our model. Thanks to these designs, our model can obtain fine-grained and multi-scale brain segmentation with high robustness to variations in MR scanners and imaging protocols. Extensive experiments on 558 dHCP and 176 fetal brain MR images demonstrate that our model achieves state-of-the-art segmentation performance across multi-site datasets. Our code is publicly available at https://github.com/sj-huang/HieraParceNet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Avants, B.B., Tustison, N., Song, G., et al.: Advanced normalization tools (ants). Insight J. 2(365), 1–35 (2009)

    Google Scholar 

  2. Billot, B., et al.: Synthseg: segmentation of brain MRI scans of any contrast and resolution without retraining. Med. Image Anal. 86, 102789–102789 (2021)

    Article  Google Scholar 

  3. Cardoso, M.J., et al.: Monai: an open-source framework for deep learning in healthcare. ArXiv arxiv:2211.02701 (2022)

  4. Dey, N., et al.: Anystar: domain randomized universal star-convex 3d instance segmentation. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 7593–7603 (2024)

    Google Scholar 

  5. Dou, H., et al.: A deep attentive convolutional neural network for automatic cortical plate segmentation in fetal MRI. IEEE Trans. Med. Imaging 40, 1123–1133 (2020)

    Article  Google Scholar 

  6. Dou, Q., et al.: 3d deeply supervised network for automated segmentation of volumetric medical images. Med. Image Anal. 41, 40–54 (2017)

    Article  Google Scholar 

  7. de Dumast, P., Kebiri, H., Atat, C., Dunet, V., Koob, M., Cuadra, M.B.: Segmentation of the cortical plate in fetal brain MRI with a topological loss. In: Sudre, C.H., et al. (eds.) UNSURE/PIPPI -2021. LNCS, vol. 12959, pp. 200–209. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87735-4_19

    Chapter  Google Scholar 

  8. Fidon, L., et al.: Label-set loss functions for partial supervision: application to fetal brain 3D MRI parcellation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12902, pp. 647–657. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87196-3_60

    Chapter  Google Scholar 

  9. Fidon, L., et al.: Distributionally robust segmentation of abnormal fetal brain 3d mri. ArXiv arxiv:2108.04175 (2021)

  10. Gholipour, A., et al.: A normative spatiotemporal mri atlas of the fetal brain for automatic segmentation and analysis of early brain growth. Sci. Rep. 7 (2017)

    Google Scholar 

  11. Hatamizadeh, A., Yang, D., Roth, H.R., Xu, D.: Unetr: transformers for 3d medical image segmentation. In: 2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), pp. 1748–1758 (2021)

    Google Scholar 

  12. Huang, G., Chen, D., Li, T., Wu, F., van der Maaten, L., Weinberger, K.Q.: Multi-scale dense networks for resource efficient image classification. In: International Conference on Learning Representations (2017)

    Google Scholar 

  13. Huang, H., et al.: Unet 3+: a full-scale connected unet for medical image segmentation. In: ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1055–1059 (2020)

    Google Scholar 

  14. Iglesias, J.E., et al.: Synthsr: a public AI tool to turn heterogeneous clinical brain scans into high-resolution t1-weighted images for 3d morphometry. Sci. Adv. 9(5), eadd3607 (2023)

    Google Scholar 

  15. Isensee, F., Jaeger, P.F., Kohl, S.A.A., Petersen, J., Maier-Hein, K.: nnu-net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18, 203–211 (2020)

    Article  Google Scholar 

  16. Karimi, D., Rollins, C.K., Velasco-Annis, C., Ouaalam, A., Gholipour, A.: Learning to segment fetal brain tissue from noisy annotations. Med. Image Anal. 85, 102731 (2022)

    Article  Google Scholar 

  17. Li, L., et al.: Fetal cortex segmentation with topology and thickness loss constraints. In: Baxter, J.S.H., et al. (eds.) EPIMI/ML-CDS@MICCAI, pp. 123–133. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-23223-7_11

    Chapter  Google Scholar 

  18. Li, L., et al.: CAS-net: conditional atlas generation and brain segmentation for fetal MRI. In: Sudre, C.H., et al. (eds.) UNSURE/PIPPI -2021. LNCS, vol. 12959, pp. 221–230. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87735-4_21

    Chapter  Google Scholar 

  19. Machado-Rivas, F., et al.: Normal growth, sexual dimorphism, and lateral asymmetries at fetal brain MRI. Radiology, 211222 (2021)

    Google Scholar 

  20. Makropoulos, A., et al.: Automatic whole brain MRI segmentation of the developing neonatal brain. IEEE Trans. Med. Imaging 33, 1818–1831 (2014)

    Article  Google Scholar 

  21. Payette, K., et al.: An automatic multi-tissue human fetal brain segmentation benchmark using the fetal tissue annotation dataset. Sci. Data 8 (2020)

    Google Scholar 

  22. Pei, Y., et al.: Learning spatiotemporal probabilistic atlas of fetal brains with anatomically constrained registration network. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12907, pp. 239–248. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87234-2_23

  23. Rutherford, M., et al.: Mr imaging methods for assessing fetal brain development. Dev. Neurobiol. 68 (2008)

    Google Scholar 

  24. Sm, C.K.R.M., et al.: Regional brain growth trajectories in fetuses with congenital heart disease. Ann. Neurol. 89 (2020)

    Google Scholar 

  25. Vasung, L., et al.: Abnormal development of transient fetal zones in mild isolated fetal ventriculomegaly. Cerebral cortex (2022)

    Google Scholar 

  26. Xu, X., et al.: Spatiotemporal atlas of the fetal brain depicts cortical developmental gradient. J. Neurosci. 42, 9435–9449 (2022)

    Article  Google Scholar 

  27. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49

    Chapter  Google Scholar 

Download references

Acknowledgments

This work was supported in part by National Natural Science Foundation of China (No. 62131015, 62250710165, 62203355, and U23A20295), the STI 2030-Major Projects (No. 2022ZD0209000), Shanghai Municipal Central Guided Local Science and Technology Development Fund (No. YDZX20233100001001), and The Key R&D Program of Guangdong Province, China (No. 2023B0303040001 and 2021B0101420006).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Geng Chen or Dinggang Shen .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huang, S. et al. (2025). Towards Accurate Fetal Brain Parcellation via Hierarchical Network and Loss. In: Link-Sourani, D., Abaci Turk, E., Macgowan, C., Hutter, J., Melbourne, A., Licandro, R. (eds) Perinatal, Preterm and Paediatric Image Analysis. PIPPI 2024. Lecture Notes in Computer Science, vol 14747. Springer, Cham. https://doi.org/10.1007/978-3-031-73260-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-73260-7_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-73259-1

  • Online ISBN: 978-3-031-73260-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics