Skip to main content

Automatic Assessment of Fetal Multi-echo Diffusion Weighted Scans

  • Conference paper
  • First Online:
Perinatal, Preterm and Paediatric Image Analysis (PIPPI 2024)

Abstract

Fetal magnetic resonance imaging (MRI) is a intriguing tool to gain insights into early human development. Diffusion MRI is of particular interest to study neuronal development in vivo. However, fetal motion hampers accurate quantification. We suggest an automated quality check for a combined multi-echo diffusion-weighted fetal sequence on the low field (0.55T) consisting of deep learning-based masking of the brain and quality assessment. Results from 56 fetal datasets between 17 and 41 weeks gestational age illustrate the ability to obtain high-quality masks and transparent, insightful quality scores. Next, the achieved automatic assessment will be performed in real-time to guide the scan, initiate possible field-of-view (FOV) shifts, or repeat individual volumes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aviles Verdera, J., et al.: Reliability and feasibility of low-field-strength fetal mri at 0.55 t during pregnancy. Radiology 309(1), e223050 (2023)

    Google Scholar 

  2. Baker, P.N., et al.: Fetal weight estimation by echo-planar magnetic resonance imaging. Lancet 343(8898), 644–645 (1994)

    Article  Google Scholar 

  3. Bastiani, M., Andersson, J., Cordero-Grande, L., Murgasova., M., Hutter, J., Price, A., Makropoulos, A., Fitzgibbon, S., Hughes, E., Rueckert, D., Victor S., Rutherford, M., Edwards, A., Smith, S., Tournier, J., Hajnal, J., Jbabdi, S., Sotiropoulos, S.: Automated processing pipeline for neonatal diffusion mri in the developinghuman connectome project. Neuroimage pp. 750–763 (2019). https://doi.org/10.1016/j.neuroimage.2018.05.064

  4. Ciceri, T., Squarcina, L., Giubergia, A., Bertoldo, A., Brambilla, P., Peruzzo, D.: Review on deep learning fetal brain segmentation from magnetic resonance images. Artif. Intell. Med. 143, 102608 (2023). https://doi.org/10.1016/j.artmed.2023.102608

    Article  Google Scholar 

  5. Cromb, D., et al.: Assessing within-subject rates of change of placental mri diffusion metrics in normal pregnancy. Magn. Reson. Med. 90(3), 1137–1150 (2023). https://doi.org/10.1002/mrm.29665

    Article  Google Scholar 

  6. Garyfallidis, E., et al.: Dipy, a library for the analysis of diffusion mri data. Front. Neuroinf. 8 (2014). https://doi.org/10.3389/fninf.2014.00008

  7. Hutter, J., et al.: Integrated and efficient diffusion-relaxometry using ZEBRA. Sci. Rep. 8(1), 15138 (2018)

    Article  Google Scholar 

  8. Isensee, F., Jaeger, P.F., Kohl, S.A.A., Petersen, J., Maier-Hein, K.H.: nnu-net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18(2), 203–211 (2021). https://doi.org/10.1038/s41592-020-01008-z

    Article  Google Scholar 

  9. Kebiri, H., et al.: Deep learning microstructure estimation of developing brains from diffusion MRI: a newborn and fetal study. Med. Image Anal. 95, 103186 (2024). https://doi.org/10.1016/j.media.2024.103186

    Article  Google Scholar 

  10. Neves Silva, S., et al.: Real-time fetal brain tracking for functional fetal MRI. Magn. Reson. Med. 90(6), 2306–2320 (2023). https://doi.org/10.1002/mrm.29803

    Article  Google Scholar 

  11. Ponrartana, S., et al.: Low-field 0.55 t MRI evaluation of the fetus. Pediatric Radiol. 53(7), 1469–1475 (2023)

    Google Scholar 

  12. Prayer, F., et al.: Fetal MRI radiomics: non-invasive and reproducible quantification of human lung maturity. Eur. Radiol. 33(6), 4205–4213 (2023)

    Article  Google Scholar 

  13. Sanchez, T., et al.: Fetmrqc: an open-source machine learning framework for multi-centric fetal brain mri quality control. ArXiv, pp. 1–22 (2023)

    Google Scholar 

  14. Sigmund, E.E., et al.: Intravoxel incoherent motion imaging of tumor microenvironment in locally advanced breast cancer. Magn. Reson. Med. 65(5), 1437–1447 (2011)

    Article  Google Scholar 

  15. Slator, P.J., et al.: Placenta microstructure and microcirculation imaging with diffusion mri. Magn. Reson. Med. 80(2), 756–766 (2018). https://doi.org/10.1002/mrm.27036

    Article  Google Scholar 

  16. Snoussi, H., Karimi, D., Afacan, O., Utkur, M., Gholipour, A.: Haitch: a framework for distortion and motion correction in fetal multi-shell diffusion-weighted mri. ArXiv (2024)

    Google Scholar 

  17. Sørensen, A., Peters, D., Fründ, E., Lingman, G., Christiansen, O., Uldbjerg, N.: Changes in human placental oxygenation during maternal hyperoxia estimated by blood oxygen level-dependent magnetic resonance imaging. Ultrasound Obstet. Gynecol. 42(3), 310–314 (2013). https://doi.org/10.1002/uog.12395

    Article  Google Scholar 

  18. Tran, C.B.N., et al.: Development of gestational age-based fetal brain and intracranial volume reference norms using deep learning. AJNR Am. J. Neuroradiol. (1), 82–90 (2023). https://doi.org/10.3174/ajnr.A7747

  19. Wataganara, T., et al.: Fetal magnetic resonance imaging and ultrasound. J. Perinatal Med. 44(5), 533–542 (2016). https://doi.org/10.1515/jpm-2015-0226

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank all pregnant women and their families for taking part in this study. The authors thank all research midwifes and radiographers for their invaluable efforts in recruiting and looking after the women in this study. This work was supported by a Wellcome Trust Collaboration in Science grant [WT201526/Z/16/Z], a UKRI FL fellowship [MR/T018119/1] and DFG Heisenberg funding [502024488] to JH and by core funding from the Wellcome/EPSRC Centre for Medical Engineering [WT203148/Z/16/Z]. The views presented in this study represent these of the authors and not of Guy’s and St Thomas’ NHS Foundation Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonia Bortolazzi .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

Authors have no conflict of interest to declare.

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bortolazzi, A. et al. (2025). Automatic Assessment of Fetal Multi-echo Diffusion Weighted Scans. In: Link-Sourani, D., Abaci Turk, E., Macgowan, C., Hutter, J., Melbourne, A., Licandro, R. (eds) Perinatal, Preterm and Paediatric Image Analysis. PIPPI 2024. Lecture Notes in Computer Science, vol 14747. Springer, Cham. https://doi.org/10.1007/978-3-031-73260-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-73260-7_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-73259-1

  • Online ISBN: 978-3-031-73260-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics