Abstract
Fetal magnetic resonance imaging (MRI) is a intriguing tool to gain insights into early human development. Diffusion MRI is of particular interest to study neuronal development in vivo. However, fetal motion hampers accurate quantification. We suggest an automated quality check for a combined multi-echo diffusion-weighted fetal sequence on the low field (0.55T) consisting of deep learning-based masking of the brain and quality assessment. Results from 56 fetal datasets between 17 and 41 weeks gestational age illustrate the ability to obtain high-quality masks and transparent, insightful quality scores. Next, the achieved automatic assessment will be performed in real-time to guide the scan, initiate possible field-of-view (FOV) shifts, or repeat individual volumes.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aviles Verdera, J., et al.: Reliability and feasibility of low-field-strength fetal mri at 0.55 t during pregnancy. Radiology 309(1), e223050 (2023)
Baker, P.N., et al.: Fetal weight estimation by echo-planar magnetic resonance imaging. Lancet 343(8898), 644–645 (1994)
Bastiani, M., Andersson, J., Cordero-Grande, L., Murgasova., M., Hutter, J., Price, A., Makropoulos, A., Fitzgibbon, S., Hughes, E., Rueckert, D., Victor S., Rutherford, M., Edwards, A., Smith, S., Tournier, J., Hajnal, J., Jbabdi, S., Sotiropoulos, S.: Automated processing pipeline for neonatal diffusion mri in the developinghuman connectome project. Neuroimage pp. 750–763 (2019). https://doi.org/10.1016/j.neuroimage.2018.05.064
Ciceri, T., Squarcina, L., Giubergia, A., Bertoldo, A., Brambilla, P., Peruzzo, D.: Review on deep learning fetal brain segmentation from magnetic resonance images. Artif. Intell. Med. 143, 102608 (2023). https://doi.org/10.1016/j.artmed.2023.102608
Cromb, D., et al.: Assessing within-subject rates of change of placental mri diffusion metrics in normal pregnancy. Magn. Reson. Med. 90(3), 1137–1150 (2023). https://doi.org/10.1002/mrm.29665
Garyfallidis, E., et al.: Dipy, a library for the analysis of diffusion mri data. Front. Neuroinf. 8 (2014). https://doi.org/10.3389/fninf.2014.00008
Hutter, J., et al.: Integrated and efficient diffusion-relaxometry using ZEBRA. Sci. Rep. 8(1), 15138 (2018)
Isensee, F., Jaeger, P.F., Kohl, S.A.A., Petersen, J., Maier-Hein, K.H.: nnu-net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18(2), 203–211 (2021). https://doi.org/10.1038/s41592-020-01008-z
Kebiri, H., et al.: Deep learning microstructure estimation of developing brains from diffusion MRI: a newborn and fetal study. Med. Image Anal. 95, 103186 (2024). https://doi.org/10.1016/j.media.2024.103186
Neves Silva, S., et al.: Real-time fetal brain tracking for functional fetal MRI. Magn. Reson. Med. 90(6), 2306–2320 (2023). https://doi.org/10.1002/mrm.29803
Ponrartana, S., et al.: Low-field 0.55 t MRI evaluation of the fetus. Pediatric Radiol. 53(7), 1469–1475 (2023)
Prayer, F., et al.: Fetal MRI radiomics: non-invasive and reproducible quantification of human lung maturity. Eur. Radiol. 33(6), 4205–4213 (2023)
Sanchez, T., et al.: Fetmrqc: an open-source machine learning framework for multi-centric fetal brain mri quality control. ArXiv, pp. 1–22 (2023)
Sigmund, E.E., et al.: Intravoxel incoherent motion imaging of tumor microenvironment in locally advanced breast cancer. Magn. Reson. Med. 65(5), 1437–1447 (2011)
Slator, P.J., et al.: Placenta microstructure and microcirculation imaging with diffusion mri. Magn. Reson. Med. 80(2), 756–766 (2018). https://doi.org/10.1002/mrm.27036
Snoussi, H., Karimi, D., Afacan, O., Utkur, M., Gholipour, A.: Haitch: a framework for distortion and motion correction in fetal multi-shell diffusion-weighted mri. ArXiv (2024)
Sørensen, A., Peters, D., Fründ, E., Lingman, G., Christiansen, O., Uldbjerg, N.: Changes in human placental oxygenation during maternal hyperoxia estimated by blood oxygen level-dependent magnetic resonance imaging. Ultrasound Obstet. Gynecol. 42(3), 310–314 (2013). https://doi.org/10.1002/uog.12395
Tran, C.B.N., et al.: Development of gestational age-based fetal brain and intracranial volume reference norms using deep learning. AJNR Am. J. Neuroradiol. (1), 82–90 (2023). https://doi.org/10.3174/ajnr.A7747
Wataganara, T., et al.: Fetal magnetic resonance imaging and ultrasound. J. Perinatal Med. 44(5), 533–542 (2016). https://doi.org/10.1515/jpm-2015-0226
Acknowledgments
The authors thank all pregnant women and their families for taking part in this study. The authors thank all research midwifes and radiographers for their invaluable efforts in recruiting and looking after the women in this study. This work was supported by a Wellcome Trust Collaboration in Science grant [WT201526/Z/16/Z], a UKRI FL fellowship [MR/T018119/1] and DFG Heisenberg funding [502024488] to JH and by core funding from the Wellcome/EPSRC Centre for Medical Engineering [WT203148/Z/16/Z]. The views presented in this study represent these of the authors and not of Guy’s and St Thomas’ NHS Foundation Trust.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Ethics declarations
Disclosure of Interests
Authors have no conflict of interest to declare.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Bortolazzi, A. et al. (2025). Automatic Assessment of Fetal Multi-echo Diffusion Weighted Scans. In: Link-Sourani, D., Abaci Turk, E., Macgowan, C., Hutter, J., Melbourne, A., Licandro, R. (eds) Perinatal, Preterm and Paediatric Image Analysis. PIPPI 2024. Lecture Notes in Computer Science, vol 14747. Springer, Cham. https://doi.org/10.1007/978-3-031-73260-7_8
Download citation
DOI: https://doi.org/10.1007/978-3-031-73260-7_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-73259-1
Online ISBN: 978-3-031-73260-7
eBook Packages: Computer ScienceComputer Science (R0)