Skip to main content

Rethinking Fetal Brain Atlas Construction: A Deep Learning Perspective

  • Conference paper
  • First Online:
Perinatal, Preterm and Paediatric Image Analysis (PIPPI 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14747))

  • 138 Accesses

Abstract

Atlas construction is a crucial task for the analysis of fetal brain magnetic resonance imaging (MRI). Traditional registration-based methods for atlas construction may suffer from issues such as inaccurate registration and difficulty in defining morphology and geometric information. To address these challenges, we propose a novel deep learning-based approach for fetal brain atlas construction, which can replace traditional registration-based methods. Our fundamental assumption is that, in the feature space, the atlas is positioned at the center of a group of images, with the minimum distance to all images. Our approach utilizes the powerful representation ability of deep learning methods to learn the complex anatomical structure of the brain at multiple scales, by introducing a distance loss function to minimize the sum of distances between the atlas and all images in the group. We further utilize tissue maps as a structural guide to constrain our results, making them more physiologically realistic. To the best of our knowledge, we are the first to construct fetal brain atlases with powerful deep learning techniques. Our experiments on a large-scale fetal brain MRI dataset demonstrate that our approach can construct fetal brain atlases with better performance than previous registration-based methods while avoiding their limitations. Our code is publicly available at https://github.com/ZhangKai47/FetalBrainAtlas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aljabar, P., Heckemann, R.A., Hammers, A., Hajnal, J.V., Rueckert, D.: Multi-atlas based segmentation of brain images: atlas selection and its effect on accuracy. Neuroimage 46(3), 726–738 (2009)

    Article  Google Scholar 

  2. Avants, B.B., Epstein, C.L., Grossman, M., Gee, J.C.: Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Med. Image Anal. 12(1), 26–41 (2008)

    Article  Google Scholar 

  3. Avants, B.B., et al.: The optimal template effect in hippocampus studies of diseased populations. Neuroimage 49(3), 2457–2466 (2010)

    Article  Google Scholar 

  4. Billot, B., et al.: SynthSeg: segmentation of brain MRI scans of any contrast and resolution without retraining. Med. Image Anal. 86, 102789 (2023)

    Article  Google Scholar 

  5. Chen, J., He, Y., Frey, E., Li, Y., Du, Y.: Vit-v-net: vision transformer for unsupervised volumetric medical image registration. In: Medical Imaging with Deep Learning (2021)

    Google Scholar 

  6. Chen, R., et al.: Deciphering the developmental order and microstructural patterns of early white matter pathways in a diffusion MRI based fetal brain atlas. Neuroimage 264, 119700 (2022)

    Article  Google Scholar 

  7. Evans, A.C., Janke, A.L., Collins, D.L., Baillet, S.: Brain templates and atlases. Neuroimage 62(2), 911–922 (2012)

    Article  Google Scholar 

  8. Gholipour, A., et al.: A normative spatiotemporal MRI atlas of the fetal brain for automatic segmentation and analysis of early brain growth. Sci. Rep. 7(1), 476 (2017)

    Article  Google Scholar 

  9. Huang, S., et al.: Super-resolution reconstruction of fetal brain MRI with prior anatomical knowledge. In: Frangi, A., de Bruijne, M., Wassermann, D., Navab, N. (eds.) Information Processing in Medical Imaging, IPMI 2023, LNCS, vol. 13939, pp. 428–441. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-34048-2_33

  10. Jarvis, D.A., Griffiths, P.D.: Current state of MRI of the fetal brain in utero. J. Magn. Reson. Imaging 49(3), 632–646 (2019)

    Article  Google Scholar 

  11. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  12. Li, H., et al.: Mapping fetal brain development based on automated segmentation and 4d brain atlasing. Brain Struct. Funct. 226(6), 1961–1972 (2021)

    Article  Google Scholar 

  13. Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  14. Righini, A., et al.: Hippocampal infolding angle changes during brain development assessed by prenatal MR imaging. Am. J. Neuroradiol. 27(10), 2093–2097 (2006)

    Google Scholar 

  15. Shi, F., et al.: Neonatal atlas construction using sparse representation. Hum. Brain Mapp. 35(9), 4663–4677 (2014)

    Article  Google Scholar 

  16. Tilea, B., et al.: Cerebral biometry in fetal magnetic resonance imaging: new reference data. Ultrasound Obstet. Gynecol. 33(2), 173–181 (2009)

    Article  Google Scholar 

  17. Tzourio-Mazoyer, N., et al.: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15(1), 273–289 (2002)

    Google Scholar 

  18. Wang, H., Suh, J.W., Das, S.R., Pluta, J.B., Craige, C., Yushkevich, P.A.: Multi-atlas segmentation with joint label fusion. IEEE Trans. Pattern Anal. Mach. Intell. 35(3), 611–623 (2012)

    Article  Google Scholar 

  19. Wu, J., et al.: Age-specific structural fetal brain atlases construction and cortical development quantification for Chinese population. Neuroimage 241, 118412 (2021)

    Article  Google Scholar 

  20. Zhang, Y., Shi, F., Wu, G., Wang, L., Yap, P.T., Shen, D.: Consistent spatial-temporal longitudinal atlas construction for developing infant brains. IEEE Trans. Med. Imaging 35(12), 2568–2577 (2016)

    Article  Google Scholar 

  21. Zhang, Y., Shi, F., Yap, P.T., Shen, D.: Detail-preserving construction of neonatal brain atlases in space-frequency domain. Hum. Brain Mapp. 37(6), 2133–2150 (2016)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by National Natural Science Foundation of China (grant numbers 62131015, 62250710165, U23A20295), the STI 2030-Major Projects (No. 2022ZD0209000), Shanghai Municipal Central Guided Local Science and Technology Development Fund (grant number YDZX20233100001001), and The Key R&D Program of Guangdong Province, China (grant numbers 2023B0303040001, 2021B0101420006).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Geng Chen or Dinggang Shen .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, K., Huang, S., Zhu, F., Ding, Z., Chen, G., Shen, D. (2025). Rethinking Fetal Brain Atlas Construction: A Deep Learning Perspective. In: Link-Sourani, D., Abaci Turk, E., Macgowan, C., Hutter, J., Melbourne, A., Licandro, R. (eds) Perinatal, Preterm and Paediatric Image Analysis. PIPPI 2024. Lecture Notes in Computer Science, vol 14747. Springer, Cham. https://doi.org/10.1007/978-3-031-73260-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-73260-7_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-73259-1

  • Online ISBN: 978-3-031-73260-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics