Abstract
There exist various approaches for the 3D reconstruction of dynamic scenes. In medicine, particularly in endoscopy, single-shot structured light systems are frequently explored, as they allow for the reconstruction of dynamic, feature-less surfaces. Design and manufacturing of structured light endoscopes, however, implies high initial costs that significantly hinder the availability and development of these systems. To streamline this process, simulation systems are necessary that allow researchers to not only model the intricacies of medical domains, but also of structured light systems themselves. To address this, we propose Fireflies, a differentiable framework for the physically-based simulation and domain randomization of structured light endoscopy. Based on the differentiable Mitsuba renderer, Fireflies facilitates and simplifies the development of domain-specific algorithms for endoscopic procedures. In this paper, we demonstrate the effectiveness of our framework by jointly optimizing domain-specific laser-based projection pattern for Structured Light Endoscopy, and generating large-scale synthetic training data for efficient supervised learning without manual labeling. We show that a) an optimized projection pattern can increase the reconstructability of a target domain and b) the synthetic data generated by Fireflies lowers the labeling effort required for endoscopic machine learning tasks. The source code is available at: https://github.com/Henningson/Fireflies
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Buslaev, A., Iglovikov, V.I., Khvedchenya, E., Parinov, A., Druzhinin, M., Kalinin, A.A.: Albumentations: fast and flexible image augmentations. Information 11(2), 125 (2020). https://doi.org/10.3390/info11020125
Christoph Heindl, Lukas Brunner, S.Z., Scharinger, J.: Blendtorch: A real-time, adaptive domain randomization library. In: ICPR (2020)
Denninger, M., Winkelbauer, D., Sundermeyer, M., Boerdijk, W., Knauer, M., Strobl, K.H., Humt, M., Triebel, R.: Blenderproc2: A procedural pipeline for photorealistic rendering. JOSS 8(82), 4901 (2023). https://doi.org/10.21105/joss.04901
Furukawa, R., Oka, S., Kotachi, T., Okamoto, Y., Tanaka, S., Sagawa, R., Kawasaki, H.: Fully auto-calibrated active-stereo-based 3d endoscopic system using correspondence estimation with graph convolutional network. In: IEEE EMBC. pp. 4357–4360. IEEE (2020). https://doi.org/10.1109/EMBC44109.2020.9176417
Furukawa, R., Sagawa, R., Oka, S., Tanaka, S., Kawasaki, H.: Single and multi-frame auto-calibration for 3d endoscopy with differential rendering. In: IEEE EMBC. pp. 1–5. IEEE (2023). https://doi.org/10.1109/EMBC40787.2023.10340381
Goceri, E.: Medical image data augmentation: techniques, comparisons and interpretations. Artif. Intell. Rev. 56(11), 12561–12605 (2023). https://doi.org/10.1007/s10462-023-10453-z
Henningson, J.O., Semmler, M., Döllinger, M., Stamminger, M.: Joint segmentation and sub-pixel localization in structured light laryngoscopy. In: MICCAI. pp. 34–43. Springer (2023). https://doi.org/10.1007/978-3-031-43987-2_4
Henningson, J.O., Stamminger, M., Döllinger, M., Semmler, M.: Real-time 3d reconstruction of human vocal folds via high-speed laser-endoscopy. In: MICCAI. pp. 3–12. Springer (2022). https://doi.org/10.1007/978-3-031-16449-1_1
İncetan, K., Celik, I.O., Obeid, A., Gokceler, G.I., Ozyoruk, K.B., Almalioglu, Y., Chen, R.J., Mahmood, F., Gilbert, H., Durr, N.J., et al.: Vr-caps: a virtual environment for capsule endoscopy. MIA 70, 101990 (2021). https://doi.org/10.1016/j.media.2021.101990
Kist, A.M., Zilker, J., Döllinger, M., Semmler, M.: Feature-based image registration in structured light endoscopy. In: MIDL. pp. 369–383. PMLR (2021)
Li, T., Bolkart, T., Black, M.J., Li, H., Romero, J.: Learning a model of facial shape and expression from 4d scans. ACM ToG 36(6), 194–1 (2017). https://doi.org/10.1145/3130800.3130813
Luegmair, G., Mehta, D.D., Kobler, J.B., Döllinger, M.: Three-dimensional optical reconstruction of vocal fold kinematics using high-speed video with a laser projection system. IEEE TMI 34(12), 2572–2582 (2015). https://doi.org/10.1109/TMI.2015.2445921
Maier-Hein, L., Groch, A., Bartoli, A., Bodenstedt, S., Boissonnat, G., Chang, P.L., Clancy, N.T., Elson, D.S., Haase, S., Heim, E., et al.: Comparative validation of single-shot optical techniques for laparoscopic 3-d surface reconstruction. IEEE TMI 33(10), 1913–1930 (2014). https://doi.org/10.1109/TMI.2014.2325607
Maier-Hein, L., Mountney, P., Bartoli, A., Elhawary, H., Elson, D., Groch, A., Kolb, A., Rodrigues, M., Sorger, J., Speidel, S., et al.: Optical techniques for 3d surface reconstruction in computer-assisted laparoscopic surgery. MIA 17(8), 974–996 (2013). https://doi.org/10.1016/j.media.2013.04.003
Maurice, X., Albitar, C., Doignon, C., de Mathelin, M.: A structured light-based laparoscope with real-time organs’ surface reconstruction for minimally invasive surgery. In: IEEE EMBC. pp. 5769–5772. IEEE (2012). https://doi.org/10.1109/EMBC.2012.6347305
Mihai, D., Hare, J.: Differentiable drawing and sketching. arXiv preprint arXiv:2103.16194 (2021). https://doi.org/10.48550/arXiv.2103.16194
Mikamo, M., Furukawa, R., Oka, S., Kotachi, T., Okamoto, Y., Tanaka, S., Sagawa, R., Kawasaki, H.: Active stereo method for 3d endoscopes using deep-layer gcn and graph representation with proximity information. In: IEEE EMBC. pp. 7551–7555. IEEE (2021). https://doi.org/10.1109/EMBC46164.2021.9629696
Motamed, S., Rogalla, P., Khalvati, F.: Data augmentation using generative adversarial networks (gans) for gan-based detection of pneumonia and covid-19 in chest x-ray images. IMU 27, 100779 (2021). https://doi.org/10.1016/j.imu.2021.100779
Nimier-David, M., Vicini, D., Zeltner, T., Jakob, W.: Mitsuba 2: A retargetable forward and inverse renderer. ACM ToG 38(6), 1–17 (2019). https://doi.org/10.1145/3355089.3356498
Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. NeurIPS 32 (2019)
Patel, R.R., Donohue, K.D., Lau, D., Unnikrishnan, H.: In vivo measurement of pediatric vocal fold motion using structured light laser projection. JOV 27(4), 463–472 (2013). https://doi.org/10.1016/j.jvoice.2013.03.004
Pérez-García, F., Sparks, R., Ourselin, S.: Torchio: a python library for efficient loading, preprocessing, augmentation and patch-based sampling of medical images in deep learning. CMPB 208, 106236 (2021). https://doi.org/10.1016/j.cmpb.2021.106236
Rakhimov, R., Ardelean, A.T., Lempitsky, V., Burnaev, E.: Npbg++: Accelerating neural point-based graphics. In: IEEE CVPR. pp. 15969–15979 (2022). https://doi.org/10.1109/CVPR52688.2022.01550
Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: MICCAI. pp. 234–241. Springer (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Rückert, D., Franke, L., Stamminger, M.: Adop: Approximate differentiable one-pixel point rendering. ACM ToG 41(4), 1–14 (2022). https://doi.org/10.1145/3528223.3530122
Semmler, M., Kniesburges, S., Birk, V., Ziethe, A., Patel, R., Döllinger, M.: 3d reconstruction of human laryngeal dynamics based on endoscopic high-speed recordings. IEEE TMI 35(7), 1615–1624 (2016). https://doi.org/10.1109/TMI.2016.2521419
Semmler, M., Kniesburges, S., Parchent, J., Jakubaß, B., Zimmermann, M., Bohr, C., Schützenberger, A., Döllinger, M.: Endoscopic laser-based 3d imaging for functional voice diagnostics. Appl. Sci. 7(6), 600 (2017). https://doi.org/10.3390/app7060600
Visentini-Scarzanella, M., Kawasaki, H., Furukawa, R., Bonino, M.A., Arolfo, S., Secco, G.L., Arezzo, A., Menciassi, A., Dario, P., Ciuti, G.: A structured light laser probe for gastrointestinal polyp size measurement: a preliminary comparative study. EIO 6(05), E602–E609 (2018). https://doi.org/10.1055/a-0577-2798
Yu, J., Lin, Z., Yang, J., Shen, X., Lu, X., Huang, T.S.: Free-form image inpainting with gated convolution. In: ICCV. pp. 4471–4480 (2019). https://doi.org/10.1109/iccv.2019.00457
Acknowledgements
We thank Moritz Kappel for valuable feedback. This work was supported by Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under grant STA662/6-1, Project-ID 448240908 and (partly) funded by the DFG - SFB 1483 - Project-ID 442419336, EmpkinS. The authors gratefully acknowledge the scientific support and HPC resources provided by the Erlangen National High Performance Computing Center of the Friedrich-Alexander-Universität Erlangen-Nürnberg.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Henningson, JO., Veltrup, R., Semmler, M., Döllinger, M., Stamminger, M. (2025). Fireflies: Photorealistic Simulation and Optimization of Structured Light Endoscopy. In: Fernandez, V., Wolterink, J.M., Wiesner, D., Remedios, S., Zuo, L., Casamitjana, A. (eds) Simulation and Synthesis in Medical Imaging. SASHIMI 2024. Lecture Notes in Computer Science, vol 15187. Springer, Cham. https://doi.org/10.1007/978-3-031-73281-2_10
Download citation
DOI: https://doi.org/10.1007/978-3-031-73281-2_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-73280-5
Online ISBN: 978-3-031-73281-2
eBook Packages: Computer ScienceComputer Science (R0)