Skip to main content

OCT Scans Simulation Framework for Data Augmentation and Controlled Evaluation of Signal Processing Approaches

  • Conference paper
  • First Online:
Simulation and Synthesis in Medical Imaging (SASHIMI 2024)

Abstract

Optical Coherence Tomography (OCT) is an emerging approach for tissue diagnostics and optical biopsy. OCT can evaluate biological structures, including vessels (such as blood and lymphatic vessels), tissue layers, tumor margins, and other inclusions. OCT scans reveal coherent speckle patterns and signal decay. These parameters can be characterized by speckle contrast (SC) and the optical attenuation coefficient (OAC). This work presents the principles of OCT signal formation, demonstrates a computationally efficient OCT signal simulation framework, and outlines the applicability of its utilization to SC and OAC processing evaluation. We then demonstrate the presented approach in application to real OCT signals of cartilage under laser treatment. The presented OCT scan simulation and signal processing tools are available on the cloud-based online platform https://www.opticelastograph.com.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Data Availability

The simulated digital phantom can be found in the supplementary materials and in the OCTDigitalPhantoms repository (https://github.com/OCTDigitalPhantoms). The Octave simulation and processing codes were converted and packaged into Docker containers and deployed to Yandex Cloud using solutions developed by Oceanstart (https://oceanstart.dev). All presented tools can be found on the cloud-based online platform OpticElastograph (https://www.opticelastograph.com). To avoid server overload, registration is required. One may sign up and request full access to the platform by contacting the authors via email.

References

  1. Bouma, B.E., De Boer, J.F., Huang, D., Jang, I.-K., Yonetsu, T., Leggett, C.L., Leitgeb, R., Sampson, D.D., Suter, M., Vakoc, B.J., Villiger, M., Wojtkowski, M.: Optical coherence tomography. Nat Rev Methods Primers. 2, 79 (2022). https://doi.org/10.1038/s43586-022-00162-2.

    Article  Google Scholar 

  2. Chen, Y., Yuan, S., Wierwille, J., Naphas, R., Li, Q., Blackwell, T.R., Winnard, P.T., Raman, V., Glunde, K.: Integrated Optical Coherence Tomography (OCT) and Fluorescence Laminar Optical Tomography (FLOT). IEEE J. Select. Topics Quantum Electron. 16, 755–766 (2010). https://doi.org/10.1109/JSTQE.2009.2037723.

    Article  Google Scholar 

  3. Fujimoto, J.G., Brezinski, M.E., Tearney, G.J., Boppart, S.A., Bouma, B., Hee, M.R., Southern, J.F., Swanson, E.A.: Optical biopsy and imaging using optical coherence tomography. Nat Med. 1, 970–972 (1995). https://doi.org/10.1038/nm0995-970.

    Article  Google Scholar 

  4. Plekhanov, A.A., Sirotkina, M.A., Sovetsky, A.A., Gubarkova, E.V., Kuznetsov, S.S., Matveyev, A.L., Matveev, L.A., Zagaynova, E.V., Gladkova, N.D., Zaitsev, V.Y.: Histological validation of in vivo assessment of cancer tissue inhomogeneity and automated morphological segmentation enabled by Optical Coherence Elastography. Sci Rep. 10, 11781 (2020). https://doi.org/10.1038/s41598-020-68631-w.

    Article  Google Scholar 

  5. Ge, G.R., Rolland, J.P., Parker, K.J.: Speckle statistics of biological tissues in optical coherence tomography. Biomed. Opt. Express. 12, 4179 (2021). https://doi.org/10.1364/BOE.422765.

    Article  Google Scholar 

  6. Weatherbee, A., Sugita, M., Bizheva, K., Popov, I., Vitkin, A.: Probability density function formalism for optical coherence tomography signal analysis: a controlled phantom study. Opt. Lett. 41, 2727 (2016). https://doi.org/10.1364/OL.41.002727.

    Article  Google Scholar 

  7. Plekhanov, A.A., Gubarkova, E.V., Sirotkina, M.A., Sovetsky, A.A., Vorontsov, D.A., Matveev, L.A., Kuznetsov, S.S., Bogomolova, A.Y., Vorontsov, A.Y., Matveyev, A.L., Gamayunov, S.V., Zagaynova, E.V., Zaitsev, V.Y., Gladkova, N.D.: Compression OCT-elastography combined with speckle-contrast analysis as an approach to the morphological assessment of breast cancer tissue. Biomed. Opt. Express. 14, 3037 (2023). https://doi.org/10.1364/BOE.489021.

    Article  Google Scholar 

  8. Ali, M., Hadj, B.: Segmentation of OCT skin images by classification of speckle statistical parameters. In: 2010 IEEE International Conference on Image Processing, pp. 613–616. Hong Kong, China (2010). https://doi.org/10.1109/ICIP.2010.5653019.

  9. Mcheik, A., Batatia, H., Spiteri, P., Tauber, C., George, J., Lagarde, J.M.: Skin Oct Images Characterization Based on Speckle distribution. In: Proceedings of the Singaporean-French Ipal Symposium 2009, pp. 86–95. WORLD SCIENTIFIC, Singapore (2009). https://doi.org/10.1142/9789814277563_0009.

  10. Lindenmaier, A.A., Conroy, L., Farhat, G., DaCosta, R.S., Flueraru, C., Vitkin, I.A.: Texture analysis of optical coherence tomography speckle for characterizing biological tissues in vivo. Opt. Lett. 38, 1280 (2013). https://doi.org/10.1364/OL.38.001280.

    Article  Google Scholar 

  11. Demidov, V., Demidova, N., Pires, L., Demidova, O., Flueraru, C., Wilson, B.C., Alex Vitkin, I.: Volumetric tumor delineation and assessment of its early response to radiotherapy with optical coherence tomography. Biomed. Opt. Express. 12, 2952 (2021). https://doi.org/10.1364/BOE.424045.

    Article  Google Scholar 

  12. Möller, J., Popanda, E., Aydın, N.H., Welp, H., Tischoff, I., Brenner, C., Schmieder, K., Hofmann, M.R., Miller, D.: Accurate OCT-based diffuse adult-type glioma WHO grade 4 tissue classification using comprehensible texture feature analysis. Biomedical Signal Processing and Control. 88, 105047 (2024). https://doi.org/10.1016/j.bspc.2023.105047.

    Article  Google Scholar 

  13. Mariampillai, A., Standish, B.A., Moriyama, E.H., Khurana, M., Munce, N.R., Leung, M.K.K., Jiang, J., Cable, A., Wilson, B.C., Vitkin, I.A., Yang, V.X.D.: Speckle variance detection of microvasculature using swept-source optical coherence tomography. Opt. Lett. 33, 1530 (2008). https://doi.org/10.1364/OL.33.001530.

    Article  Google Scholar 

  14. Leahy, M.J. ed: Microcirculation Imaging. Wiley (2012). https://doi.org/10.1002/9783527651238.

    Article  Google Scholar 

  15. Vermeer, K.A., Mo, J., Weda, J.J.A., Lemij, H.G., De Boer, J.F.: Depth-resolved model-based reconstruction of attenuation coefficients in optical coherence tomography. Biomed. Opt. Express. 5, 322 (2014). https://doi.org/10.1364/BOE.5.000322.

    Article  Google Scholar 

  16. Gong, P., Almasian, M., Van Soest, G., De Bruin, D.M., Van Leeuwen, T.G., Sampson, D.D., Faber, D.J.: Parametric imaging of attenuation by optical coherence tomography: review of models, methods, and clinical translation. J. Biomed. Opt. 25, 1 (2020). https://doi.org/10.1117/1.JBO.25.4.040901.

    Article  Google Scholar 

  17. Zaitsev, V.Y., Matveyev, A.L., Matveev, L.A., Sovetsky, A.A., Hepburn, M.S., Mowla, A., Kennedy, B.F.: Strain and elasticity imaging in compression optical coherence elastography: The two‐decade perspective and recent advances. Journal of Biophotonics. 14, e202000257 (2021). https://doi.org/10.1002/jbio.202000257.

    Article  Google Scholar 

  18. Zaitsev, V.Y., Matveev, L.A., Matveyev, A.L., Gelikonov, G.V., Gelikonov, V.M.: A model for simulating speckle-pattern evolution based on close to reality procedures used in spectral-domain OCT. Laser Phys. Lett. 11, 105601 (2014). https://doi.org/10.1088/1612-2011/11/10/105601.

    Article  Google Scholar 

  19. Abdurashitov, A., Tuchin, V.: A robust model of an OCT signal in a spectral domain. Laser Phys. Lett. 15, 086201 (2018). https://doi.org/10.1088/1612-202X/aac5c7.

    Article  Google Scholar 

  20. Kalkman, J.: Fourier-Domain Optical Coherence Tomography Signal Analysis and Numerical Modeling. International Journal of Optics. 2017, 1–16 (2017). https://doi.org/10.1155/2017/9586067.

    Article  Google Scholar 

  21. Macdonald, C.M., Munro, P.R.T.: Approximate image synthesis in optical coherence tomography. Biomed. Opt. Express. 12, 3323 (2021). https://doi.org/10.1364/BOE.420992.

    Article  Google Scholar 

  22. Kennedy, B.F., Hillman, T.R., Curatolo, A., Sampson, D.D.: Speckle reduction in optical coherence tomography by strain compounding. Opt. Lett. 35, 2445 (2010). https://doi.org/10.1364/OL.35.002445.

    Article  Google Scholar 

  23. Matveyev, A.L., Matveev, L.A., Sovetsky, A.A., Gelikonov, G.V., Moiseev, A.A., Zaitsev, V.Y.: Vector method for strain estimation in phase-sensitive optical coherence elastography. Laser Phys. Lett. 15, 065603 (2018). https://doi.org/10.1088/1612-202X/aab5e9.

    Article  Google Scholar 

  24. Kennedy, B.F., Wijesinghe, P., Sampson, D.D.: The emergence of optical elastography in biomedicine. Nature Photon. 11, 215–221 (2017). https://doi.org/10.1038/nphoton.2017.6.

    Article  Google Scholar 

  25. Kirillov, A., et al.: Segment Anything (2023). https://doi.org/10.48550/ARXIV.2304.02643.

  26. Ma, J., He, Y., Li, F., Han, L., You, C., Wang, B.: Segment anything in medical images. Nat Commun. 15, 654 (2024). https://doi.org/10.1038/s41467-024-44824-z.

    Article  Google Scholar 

  27. Huang, Y., Yang, X., Liu, L., Zhou, H., Chang, A., Zhou, X., Chen, R., Yu, J., Chen, J., Chen, C., Liu, S., Chi, H., Hu, X., Yue, K., Li, L., Grau, V., Fan, D.-P., Dong, F., Ni, D.: Segment anything model for medical images? Medical Image Analysis. 92, 103061 (2024). https://doi.org/10.1016/j.media.2023.103061.

    Article  Google Scholar 

  28. Zhao, M., Lu, Z., Zhu, S., Wang, X., Feng, J.: Automatic generation of retinal optical coherence tomography images based on generative adversarial networks. Medical Physics. 49, 7357–7367 (2022). https://doi.org/10.1002/mp.15988.

    Article  Google Scholar 

  29. Sreejith Kumar, A.J., et al.: Evaluation of generative adversarial networks for high-resolution synthetic image generation of circumpapillary optical coherence tomography images for glaucoma. JAMA Ophthalmol. 140, 974 (2022). https://doi.org/10.1001/jamaophthalmol.2022.3375.

  30. Tajmirriahi, M., Kafieh, R., Amini, Z., Lakshminarayanan, V.: A Dual-Discriminator Fourier Acquisitive GAN for Generating Retinal Optical Coherence Tomography Images. IEEE Trans. Instrum. Meas. 71, 1–8 (2022). https://doi.org/10.1109/TIM.2022.3189735.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Prof. Alex Vitkin from the University of Toronto for useful discussions and overall scientific support, and to Prof. Maher Assaad from Ajman University for support with the cloud-based OCT phantom simulation presented in Fig. 1. We are also grateful to Oceanstart for developing the integrative online platform (https://oceanstart.dev/optic-elastograph).

Funding

This work is supported by the Russian Science Foundation grant No 22-12-00295.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lev Matveev .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

Aleksandr Sovetsky is the CEO and owner of the image and data processing software development and cloud-computing company OpticElastograph LLC. OpticElastograph LLC is an integrator of the presented research-based solutions. The OCTDigitalPhantoms repository is partially supported by Ajman University project No. 2023-IRG-ENIT-44 under the PI of Prof. Maher Assaad.

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sovetsky, A., Matveyev, A., Chizhov, P., Zaitsev, V., Matveev, L. (2025). OCT Scans Simulation Framework for Data Augmentation and Controlled Evaluation of Signal Processing Approaches. In: Fernandez, V., Wolterink, J.M., Wiesner, D., Remedios, S., Zuo, L., Casamitjana, A. (eds) Simulation and Synthesis in Medical Imaging. SASHIMI 2024. Lecture Notes in Computer Science, vol 15187. Springer, Cham. https://doi.org/10.1007/978-3-031-73281-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-73281-2_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-73280-5

  • Online ISBN: 978-3-031-73281-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics