Abstract
Optical Coherence Tomography (OCT) is an emerging approach for tissue diagnostics and optical biopsy. OCT can evaluate biological structures, including vessels (such as blood and lymphatic vessels), tissue layers, tumor margins, and other inclusions. OCT scans reveal coherent speckle patterns and signal decay. These parameters can be characterized by speckle contrast (SC) and the optical attenuation coefficient (OAC). This work presents the principles of OCT signal formation, demonstrates a computationally efficient OCT signal simulation framework, and outlines the applicability of its utilization to SC and OAC processing evaluation. We then demonstrate the presented approach in application to real OCT signals of cartilage under laser treatment. The presented OCT scan simulation and signal processing tools are available on the cloud-based online platform https://www.opticelastograph.com.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Data Availability
The simulated digital phantom can be found in the supplementary materials and in the OCTDigitalPhantoms repository (https://github.com/OCTDigitalPhantoms). The Octave simulation and processing codes were converted and packaged into Docker containers and deployed to Yandex Cloud using solutions developed by Oceanstart (https://oceanstart.dev). All presented tools can be found on the cloud-based online platform OpticElastograph (https://www.opticelastograph.com). To avoid server overload, registration is required. One may sign up and request full access to the platform by contacting the authors via email.
References
Bouma, B.E., De Boer, J.F., Huang, D., Jang, I.-K., Yonetsu, T., Leggett, C.L., Leitgeb, R., Sampson, D.D., Suter, M., Vakoc, B.J., Villiger, M., Wojtkowski, M.: Optical coherence tomography. Nat Rev Methods Primers. 2, 79 (2022). https://doi.org/10.1038/s43586-022-00162-2.
Chen, Y., Yuan, S., Wierwille, J., Naphas, R., Li, Q., Blackwell, T.R., Winnard, P.T., Raman, V., Glunde, K.: Integrated Optical Coherence Tomography (OCT) and Fluorescence Laminar Optical Tomography (FLOT). IEEE J. Select. Topics Quantum Electron. 16, 755–766 (2010). https://doi.org/10.1109/JSTQE.2009.2037723.
Fujimoto, J.G., Brezinski, M.E., Tearney, G.J., Boppart, S.A., Bouma, B., Hee, M.R., Southern, J.F., Swanson, E.A.: Optical biopsy and imaging using optical coherence tomography. Nat Med. 1, 970–972 (1995). https://doi.org/10.1038/nm0995-970.
Plekhanov, A.A., Sirotkina, M.A., Sovetsky, A.A., Gubarkova, E.V., Kuznetsov, S.S., Matveyev, A.L., Matveev, L.A., Zagaynova, E.V., Gladkova, N.D., Zaitsev, V.Y.: Histological validation of in vivo assessment of cancer tissue inhomogeneity and automated morphological segmentation enabled by Optical Coherence Elastography. Sci Rep. 10, 11781 (2020). https://doi.org/10.1038/s41598-020-68631-w.
Ge, G.R., Rolland, J.P., Parker, K.J.: Speckle statistics of biological tissues in optical coherence tomography. Biomed. Opt. Express. 12, 4179 (2021). https://doi.org/10.1364/BOE.422765.
Weatherbee, A., Sugita, M., Bizheva, K., Popov, I., Vitkin, A.: Probability density function formalism for optical coherence tomography signal analysis: a controlled phantom study. Opt. Lett. 41, 2727 (2016). https://doi.org/10.1364/OL.41.002727.
Plekhanov, A.A., Gubarkova, E.V., Sirotkina, M.A., Sovetsky, A.A., Vorontsov, D.A., Matveev, L.A., Kuznetsov, S.S., Bogomolova, A.Y., Vorontsov, A.Y., Matveyev, A.L., Gamayunov, S.V., Zagaynova, E.V., Zaitsev, V.Y., Gladkova, N.D.: Compression OCT-elastography combined with speckle-contrast analysis as an approach to the morphological assessment of breast cancer tissue. Biomed. Opt. Express. 14, 3037 (2023). https://doi.org/10.1364/BOE.489021.
Ali, M., Hadj, B.: Segmentation of OCT skin images by classification of speckle statistical parameters. In: 2010 IEEE International Conference on Image Processing, pp. 613–616. Hong Kong, China (2010). https://doi.org/10.1109/ICIP.2010.5653019.
Mcheik, A., Batatia, H., Spiteri, P., Tauber, C., George, J., Lagarde, J.M.: Skin Oct Images Characterization Based on Speckle distribution. In: Proceedings of the Singaporean-French Ipal Symposium 2009, pp. 86–95. WORLD SCIENTIFIC, Singapore (2009). https://doi.org/10.1142/9789814277563_0009.
Lindenmaier, A.A., Conroy, L., Farhat, G., DaCosta, R.S., Flueraru, C., Vitkin, I.A.: Texture analysis of optical coherence tomography speckle for characterizing biological tissues in vivo. Opt. Lett. 38, 1280 (2013). https://doi.org/10.1364/OL.38.001280.
Demidov, V., Demidova, N., Pires, L., Demidova, O., Flueraru, C., Wilson, B.C., Alex Vitkin, I.: Volumetric tumor delineation and assessment of its early response to radiotherapy with optical coherence tomography. Biomed. Opt. Express. 12, 2952 (2021). https://doi.org/10.1364/BOE.424045.
Möller, J., Popanda, E., Aydın, N.H., Welp, H., Tischoff, I., Brenner, C., Schmieder, K., Hofmann, M.R., Miller, D.: Accurate OCT-based diffuse adult-type glioma WHO grade 4 tissue classification using comprehensible texture feature analysis. Biomedical Signal Processing and Control. 88, 105047 (2024). https://doi.org/10.1016/j.bspc.2023.105047.
Mariampillai, A., Standish, B.A., Moriyama, E.H., Khurana, M., Munce, N.R., Leung, M.K.K., Jiang, J., Cable, A., Wilson, B.C., Vitkin, I.A., Yang, V.X.D.: Speckle variance detection of microvasculature using swept-source optical coherence tomography. Opt. Lett. 33, 1530 (2008). https://doi.org/10.1364/OL.33.001530.
Leahy, M.J. ed: Microcirculation Imaging. Wiley (2012). https://doi.org/10.1002/9783527651238.
Vermeer, K.A., Mo, J., Weda, J.J.A., Lemij, H.G., De Boer, J.F.: Depth-resolved model-based reconstruction of attenuation coefficients in optical coherence tomography. Biomed. Opt. Express. 5, 322 (2014). https://doi.org/10.1364/BOE.5.000322.
Gong, P., Almasian, M., Van Soest, G., De Bruin, D.M., Van Leeuwen, T.G., Sampson, D.D., Faber, D.J.: Parametric imaging of attenuation by optical coherence tomography: review of models, methods, and clinical translation. J. Biomed. Opt. 25, 1 (2020). https://doi.org/10.1117/1.JBO.25.4.040901.
Zaitsev, V.Y., Matveyev, A.L., Matveev, L.A., Sovetsky, A.A., Hepburn, M.S., Mowla, A., Kennedy, B.F.: Strain and elasticity imaging in compression optical coherence elastography: The two‐decade perspective and recent advances. Journal of Biophotonics. 14, e202000257 (2021). https://doi.org/10.1002/jbio.202000257.
Zaitsev, V.Y., Matveev, L.A., Matveyev, A.L., Gelikonov, G.V., Gelikonov, V.M.: A model for simulating speckle-pattern evolution based on close to reality procedures used in spectral-domain OCT. Laser Phys. Lett. 11, 105601 (2014). https://doi.org/10.1088/1612-2011/11/10/105601.
Abdurashitov, A., Tuchin, V.: A robust model of an OCT signal in a spectral domain. Laser Phys. Lett. 15, 086201 (2018). https://doi.org/10.1088/1612-202X/aac5c7.
Kalkman, J.: Fourier-Domain Optical Coherence Tomography Signal Analysis and Numerical Modeling. International Journal of Optics. 2017, 1–16 (2017). https://doi.org/10.1155/2017/9586067.
Macdonald, C.M., Munro, P.R.T.: Approximate image synthesis in optical coherence tomography. Biomed. Opt. Express. 12, 3323 (2021). https://doi.org/10.1364/BOE.420992.
Kennedy, B.F., Hillman, T.R., Curatolo, A., Sampson, D.D.: Speckle reduction in optical coherence tomography by strain compounding. Opt. Lett. 35, 2445 (2010). https://doi.org/10.1364/OL.35.002445.
Matveyev, A.L., Matveev, L.A., Sovetsky, A.A., Gelikonov, G.V., Moiseev, A.A., Zaitsev, V.Y.: Vector method for strain estimation in phase-sensitive optical coherence elastography. Laser Phys. Lett. 15, 065603 (2018). https://doi.org/10.1088/1612-202X/aab5e9.
Kennedy, B.F., Wijesinghe, P., Sampson, D.D.: The emergence of optical elastography in biomedicine. Nature Photon. 11, 215–221 (2017). https://doi.org/10.1038/nphoton.2017.6.
Kirillov, A., et al.: Segment Anything (2023). https://doi.org/10.48550/ARXIV.2304.02643.
Ma, J., He, Y., Li, F., Han, L., You, C., Wang, B.: Segment anything in medical images. Nat Commun. 15, 654 (2024). https://doi.org/10.1038/s41467-024-44824-z.
Huang, Y., Yang, X., Liu, L., Zhou, H., Chang, A., Zhou, X., Chen, R., Yu, J., Chen, J., Chen, C., Liu, S., Chi, H., Hu, X., Yue, K., Li, L., Grau, V., Fan, D.-P., Dong, F., Ni, D.: Segment anything model for medical images? Medical Image Analysis. 92, 103061 (2024). https://doi.org/10.1016/j.media.2023.103061.
Zhao, M., Lu, Z., Zhu, S., Wang, X., Feng, J.: Automatic generation of retinal optical coherence tomography images based on generative adversarial networks. Medical Physics. 49, 7357–7367 (2022). https://doi.org/10.1002/mp.15988.
Sreejith Kumar, A.J., et al.: Evaluation of generative adversarial networks for high-resolution synthetic image generation of circumpapillary optical coherence tomography images for glaucoma. JAMA Ophthalmol. 140, 974 (2022). https://doi.org/10.1001/jamaophthalmol.2022.3375.
Tajmirriahi, M., Kafieh, R., Amini, Z., Lakshminarayanan, V.: A Dual-Discriminator Fourier Acquisitive GAN for Generating Retinal Optical Coherence Tomography Images. IEEE Trans. Instrum. Meas. 71, 1–8 (2022). https://doi.org/10.1109/TIM.2022.3189735.
Acknowledgments
The authors are grateful to Prof. Alex Vitkin from the University of Toronto for useful discussions and overall scientific support, and to Prof. Maher Assaad from Ajman University for support with the cloud-based OCT phantom simulation presented in Fig. 1. We are also grateful to Oceanstart for developing the integrative online platform (https://oceanstart.dev/optic-elastograph).
Funding
This work is supported by the Russian Science Foundation grant No 22-12-00295.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Ethics declarations
Disclosure of Interests
Aleksandr Sovetsky is the CEO and owner of the image and data processing software development and cloud-computing company OpticElastograph LLC. OpticElastograph LLC is an integrator of the presented research-based solutions. The OCTDigitalPhantoms repository is partially supported by Ajman University project No. 2023-IRG-ENIT-44 under the PI of Prof. Maher Assaad.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Sovetsky, A., Matveyev, A., Chizhov, P., Zaitsev, V., Matveev, L. (2025). OCT Scans Simulation Framework for Data Augmentation and Controlled Evaluation of Signal Processing Approaches. In: Fernandez, V., Wolterink, J.M., Wiesner, D., Remedios, S., Zuo, L., Casamitjana, A. (eds) Simulation and Synthesis in Medical Imaging. SASHIMI 2024. Lecture Notes in Computer Science, vol 15187. Springer, Cham. https://doi.org/10.1007/978-3-031-73281-2_12
Download citation
DOI: https://doi.org/10.1007/978-3-031-73281-2_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-73280-5
Online ISBN: 978-3-031-73281-2
eBook Packages: Computer ScienceComputer Science (R0)