Skip to main content

Synthesizing Scalable CFD-Enhanced Aortic 4D Flow MRI for Assessing Accuracy and Precision of Deep-Learning Image Reconstruction and Segmentation Tasks

  • Conference paper
  • First Online:
Simulation and Synthesis in Medical Imaging (SASHIMI 2024)

Abstract

Systematic and random errors of MRI measurements in conjunction with the absence of ground truth data limit the assessment of accuracy and precision of 4D flow MRI image reconstruction and other downstream tasks. In this work, we propose to generate scalable synthetic CFD-enhanced aortic 4D flow MRI data, which we assemble into a dataset named RACLETTE. Our approach takes in-vivo 4D flow MRI data as input and pairs it with CFD-based “ground-truth” mean and turbulent flow fields. Specifically, high-resolution pulsatile velocity-vector and turbulent flow fields are simulated for varying degrees of aortic stenosis for a set of 139 time-resolved compliant aortic geometries. To generate realistic datasets, the synthetic flow fields are projected and embedded into the background of the in-vivo 4D flow MRI scans. Upon Fourier transform, data sampling using a given velocity encoding and undersampling scheme yields k-space data as input to deep-learning image reconstruction, segmentation and other downstream tasks. Since the synthetic 4D flow MRI data is paired with noise-free reference values including velocity, pressure, wall shear stress, the Reynolds stress tensor and pulse wave velocity, accuracy and precision of reconstruction and inference are readily available. To demonstrate the value of synthetic CFD-enhanced 4D flow MRI data, we utilize the dataset to train and apply (1) deep-learning based image reconstruction and (2) automatic vessel segmentation. It is shown that the synthetically trained deep-learning tasks generalize sufficiently and provide insights into the performance of reconstruction and processing tasks, indicating the potential value of our synthetic dataset also for further applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Saitta, S. et al.: Evaluation of 4D flow MRI-based non-invasive pressure assessment in aortic coarctations. J. Biomech. 94, 13–21 (2019). https://doi.org/10.1016/j.jbiomech.2019.07.004.

    Article  Google Scholar 

  2. Garcia, J., Barker, A.J., Markl, M.: The Role of Imaging of Flow Patterns by 4D Flow MRI in Aortic Stenosis. JACC Cardiovasc. Imaging. 12, 252–266 (2019). https://doi.org/10.1016/j.jcmg.2018.10.034.

    Article  Google Scholar 

  3. Soomro, S., Akram, F., Munir, A., Lee, C.H., Choi, K.N.: Segmentation of Left and Right Ventricles in Cardiac MRI Using Active Contours. Comput. Math. Methods Med. 2017, 1–16 (2017). https://doi.org/10.1155/2017/8350680.

    Article  MathSciNet  Google Scholar 

  4. Zhuang, B., Sirajuddin, A., Zhao, S., Lu, M.: The role of 4D flow MRI for clinical applications in cardiovascular disease: current status and future perspectives. Quant. Imaging Med. Surg. 11, 4193–4210 (2021). https://doi.org/10.21037/qims-20-1234.

  5. Binter, C. et al.: Turbulent kinetic energy assessed by multipoint 4-dimensional flow magnetic resonance imaging provides additional information relative to echocardiography for the determination of aortic stenosis severity. Circ. Cardiovasc. Imaging. 10 (2017). https://doi.org/10.1161/CIRCIMAGING.116.005486.

  6. Markl, M., Frydrychowicz, A., Kozerke, S., Hope, M., Wieben, O.: 4D flow MRI. J. Magn. Reson. Imaging. 36, 1015–1036 (2012). https://doi.org/10.1002/jmri.23632.

    Article  Google Scholar 

  7. Wiesemann, S. et al.: Impact of sequence type and field strength (1.5, 3, and 7T) on 4D flow MRI hemodynamic aortic parameters in healthy volunteers. Magn. Reson. Med. 85, 721–733 (2021). https://doi.org/10.1002/mrm.28450.

  8. Vishnevskiy, V., Walheim, J., Kozerke, S.: Deep variational network for rapid 4D flow MRI reconstruction. Nat. Mach. Intell. 2, 228–235 (2020). https://doi.org/10.1038/s42256-020-0165-6.

    Article  Google Scholar 

  9. Marlevi, D. et al.: Non-invasive estimation of relative pressure in turbulent flow using virtual work-energy. Med. Image Anal. 60, 101627 (2020). https://doi.org/10.1016/j.media.2019.101627.

    Article  Google Scholar 

  10. Ferdian, E. et al.: 4DFlowNet: super-resolution 4D flow MRI using deep learning and computational fluid dynamics. Front. Phys. 8 (2020). https://doi.org/10.3389/fphy.2020.00138.

  11. Dirix, P., Buoso, S., Peper, E.S., Kozerke, S.: Synthesis of patient-specific multipoint 4D flow MRI data of turbulent aortic flow downstream of stenotic valves. Sci. Rep. 12, 16004 (2022). https://doi.org/10.1038/s41598-022-20121-x.

    Article  Google Scholar 

  12. Buoso, S., Joyce, T., Schulthess, N., Kozerke, S.: MRXCAT2.0: Synthesis of realistic numerical phantoms by combining left-ventricular shape learning, biophysical simulations and tissue texture generation. J. Cardiovasc. Magn. Reson. 25, 25 (2023). https://doi.org/10.1186/s12968-023-00934-z.

  13. Hammernik, K. et al.: Learning a variational network for reconstruction of accelerated MRI data. Magn. Reson. Med. 79, 3055–3071 (2018). https://doi.org/10.1002/mrm.26977.

    Article  Google Scholar 

  14. Oktay, O. et al.: Attention U-Net: Learning Where to Look for the Pancreas. (2018).

    Google Scholar 

  15. Buoso, S., Joyce, T., Kozerke, S.: Personalising left-ventricular biophysical models of the heart using parametric physics-informed neural networks. Med. Image Anal. 71, 102066 (2021). https://doi.org/10.1016/j.media.2021.102066.

    Article  Google Scholar 

  16. Buoso, S., Manzoni, A., Alkadhi, H., Plass, A., Quarteroni, A., Kurtcuoglu, V.: Reduced-order modeling of blood flow for noninvasive functional evaluation of coronary artery disease. Biomech. Model. Mechanobiol. 18, 1867–1881 (2019). https://doi.org/10.1007/s10237-019-01182-w.

    Article  Google Scholar 

  17. Yushkevich, P., Hao, J., Pouch, A., Ravikumar, S.: ITK-SNAP 4.0. http://www.itksnap.org/pmwiki/pmwiki.php.

  18. Vishnevskiy, V., Gass, T., Szekely, G., Tanner, C., Goksel, O.: Isotropic Total Variation Regularization of Displacements in Parametric Image Registration. IEEE Trans. Med. Imaging. 36, 385–395 (2017). https://doi.org/10.1109/TMI.2016.2610583.

    Article  Google Scholar 

  19. Ferdian, E., Dubowitz, D.J., Mauger, C.A., Wang, A., Young, A.A.: WSSNet: aortic wall shear stress estimation using deep learning on 4D flow MRI. Front. Cardiovasc. Med. 8 (2022). https://doi.org/10.3389/fcvm.2021.769927.

  20. Romero, P. et al.: Clinically-driven virtual patient cohorts generation: an application to aorta. Front. Physiol. 12 (2021). https://doi.org/10.3389/fphys.2021.713118.

  21. Nabeel, P.M., Kiran, V.R., Joseph, J., Abhidev, V. V., Sivaprakasam, M.: Local Pulse Wave Velocity: Theory, Methods, Advancements, and Clinical Applications. IEEE Rev. Biomed. Eng. 13, 74–112 (2020). https://doi.org/10.1109/RBME.2019.2931587.

    Article  Google Scholar 

  22. Cuomo, F., Roccabianca, S., Dillon-Murphy, D., Xiao, N., Humphrey, J.D., Figueroa, C.A.: Effects of age-associated regional changes in aortic stiffness on human hemodynamics revealed by computational modeling. PLoS One. 12, e0173177 (2017). https://doi.org/10.1371/journal.pone.0173177.

    Article  Google Scholar 

  23. Pirola, S. et al.: On the choice of outlet boundary conditions for patient-specific analysis of aortic flow using computational fluid dynamics. J. Biomech. 60, 15–21 (2017). https://doi.org/10.1016/j.jbiomech.2017.06.005.

    Article  Google Scholar 

  24. Updegrove, A., Wilson, N.M., Merkow, J., Lan, H., Marsden, A.L., Shadden, S.C.: SimVascular: An Open Source Pipeline for Cardiovascular Simulation. Ann. Biomed. Eng. 45, 525–541 (2017). https://doi.org/10.1007/s10439-016-1762-8.

    Article  Google Scholar 

  25. Baumgartner, H. et al.: Recommendations on the Echocardiographic Assessment of Aortic Valve Stenosis: A Focused Update from the European Association of Cardiovascular Imaging and the American Society of Echocardiography. J. Am. Soc. Echocardiogr. 30, 372–392 (2017). https://doi.org/10.1016/j.echo.2017.02.009.

    Article  Google Scholar 

  26. Herrmann, S. et al.: Differences in Natural History of Low- and High-Gradient Aortic Stenosis from Nonsevere to Severe Stage of the Disease. J. Am. Soc. Echocardiogr. 28, 1270-1282.e4 (2015). https://doi.org/10.1016/j.echo.2015.07.016.

    Article  Google Scholar 

  27. OpenFOAM Foundation Inc.: OpenFOAM v1806. https://www.openfoam.com/.

  28. Myronenko, A., Xubo Song: Point Set Registration: Coherent Point Drift. IEEE Trans. Pattern Anal. Mach. Intell. 32, 2262–2275 (2010). https://doi.org/10.1109/TPAMI.2010.46.

    Article  Google Scholar 

  29. Gatti, A.: pycpd, https://github.com/siavashk/pycpd.

  30. Winkelmann, S., Schaeffter, T., Koehler, T., Eggers, H., Doessel, O.: An Optimal Radial Profile Order Based on the Golden Ratio for Time-Resolved MRI. IEEE Trans. Med. Imaging. 26, 68–76 (2007). https://doi.org/10.1109/TMI.2006.885337.

    Article  Google Scholar 

  31. Weine, J., McGrath, C., Dirix, P., Buoso, S., Kozerke, S.: CMRsim –A python package for cardiovascular MR simulations incorporating complex motion and flow. Magn. Reson. Med. (2024). https://doi.org/10.1002/mrm.30010.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by funding from the Swiss National Science Foundation, grant 325230_197702. Microsoft is acknowledged for providing computational resources on Microsoft Azure.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pietro Dirix .

Editor information

Editors and Affiliations

Ethics declarations

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dirix, P., Jacobs, L., Buoso, S., Kozerke, S. (2025). Synthesizing Scalable CFD-Enhanced Aortic 4D Flow MRI for Assessing Accuracy and Precision of Deep-Learning Image Reconstruction and Segmentation Tasks. In: Fernandez, V., Wolterink, J.M., Wiesner, D., Remedios, S., Zuo, L., Casamitjana, A. (eds) Simulation and Synthesis in Medical Imaging. SASHIMI 2024. Lecture Notes in Computer Science, vol 15187. Springer, Cham. https://doi.org/10.1007/978-3-031-73281-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-73281-2_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-73280-5

  • Online ISBN: 978-3-031-73281-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics