Abstract
Precisely estimating lumen boundaries in intravascular ultrasound (IVUS) is needed for sizing interventional stents to treat deep vein thrombosis (DVT). Unfortunately, current segmentation networks like the UNet lack the precision needed for clinical adoption in IVUS workflows. This arises due to the difficulty of automatically learning accurate lumen contour from limited training data while accounting for the radial geometry of IVUS imaging. We propose the Geo-UNet framework to address these issues via a design informed by the geometry of the lumen contour segmentation task. We first convert the input data and segmentation targets from Cartesian to polar coordinates. Starting from a convUNet feature extractor, we propose a two-task setup, one for conventional pixel-wise labeling and the other for single boundary lumen-contour localization. We directly combine the two predictions by passing the predicted lumen contour through a new activation (named CDFeLU) to filter out spurious pixel-wise predictions. Our unified loss function carefully balances area-based, distance-based, and contour-based penalties to provide near clinical-grade generalization in unseen patient data. We also introduce a lightweight, inference-time technique to enhance segmentation smoothness. The efficacy of our framework on a venous IVUS dataset is shown against state-of-the-art models.
Y. Chen and N. S. D’Souza—Joint first-authorship.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Errors on N2 major diams, remain above clinical precision despite slightly worsening.
References
Arora, P., Singh, P., Girdhar, A., Vijayvergiya, R.: A state-of-the-art review on coronary artery border segmentation algorithms for intravascular ultrasound (IVUS) images. Cardiovasc. Eng. Technol. 14(2), 264–295 (2023)
Blanco, P.J., et al.: Fully automated lumen and vessel contour segmentation in intravascular ultrasound datasets. Med. Image Anal. 75, 102262 (2022)
Cardoso, M., Li, W., Brown, R., et al.: Monai: an open-source framework for deep learning in healthcare. arXiv preprint arXiv:2211.02701 (2022)
He, Y., et al.: Fully convolutional boundary regression for retina OCT segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 120–128. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_14
Hendrycks, D., Gimpel, K.: Gaussian error linear units (GELUs). arXiv preprint arXiv:1606.08415 (2016)
Huang, X., et al.: Post-IVUS: a perceptual organisation-aware selective transformer framework for intravascular ultrasound segmentation. Med. Image Anal. 89, 102922 (2023)
Huber, P.J.: Robust estimation of a location parameter. Annal. Statist. 53(1), 73–101 (1964). https://doi.org/10.1214/aoms/1177703732
Karimi, D., Salcudean, S.E.: Reducing the Hausdorff distance in medical image segmentation with convolutional neural networks. IEEE Trans. Med. Imaging 39(2), 499–513 (2019)
Kashyap, S., et al.: Feature selection for malapposition detection in intravascular ultrasound - a comparative study. In: Wu, S., Shabestari, B., Xing, L. (eds.) MICCAI 2023, pp. 165–175. Springer, Cham (2024). https://doi.org/10.1007/978-3-031-47076-9_17
Ma, J., He, Y., Li, F., Han, L., You, C., Wang, B.: Segment anything in medical images. Nat. Commun. 15(1) (2024). https://doi.org/10.1038/s41467-024-44824-z
Meng, L., Jiang, M., Zhang, C., Zhang, J.: Deep learning segmentation, classification, and risk prediction of complex vascular lesions on intravascular ultrasound images. Biomed. Signal Process. Control 82, 104584 (2023)
Oktay, O., et al.: Anatomically constrained neural networks (ACNNs): application to cardiac image enhancement and segmentation. IEEE Trans. Med. Imaging 37(2), 384–395 (2018). https://doi.org/10.1109/TMI.2017.2743464
Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Scarvelis, D., Wells, P.S.: Diagnosis and treatment of deep-vein thrombosis. CMAJ 175(9), 1087–1092 (2006)
Secemsky, E.A., et al.: Intravascular ultrasound guidance for lower extremity arterial and venous interventions. EuroIntervention 18(7), 598 (2022)
Stähr, P., et al.: Importance of calibration for diameter and area determination by intravascular ultrasound. Int. J. Cardiac Imaging 12, 221–229 (1996)
Szarski, M., Chauhan, S.: Improved real-time segmentation of intravascular ultrasound images using coordinate-aware fully convolutional networks. Comput. Med. Imaging Graph. 91, 101955 (2021)
Wissel, T., et al.: Cascaded learning in intravascular ultrasound: coronary stent delineation in manual pullbacks. J. Med. Imaging 9(2), 025001 (2022)
Xiao, H., Li, L., Liu, Q., Zhu, X., Zhang, Q.: Transformers in medical image segmentation: a review. Biomed. Signal Process. Control 84, 104791 (2023)
Xie, M., et al.: Two-stage and dual-decoder convolutional u-net ensembles for reliable vessel and plaque segmentation in carotid ultrasound images. In: 2020 19th IEEE International Conference on Machine Learning and Applications (ICMLA), pp. 1376–1381. IEEE (2020)
Xu, X., Sanford, T., Turkbey, B., Xu, S., Wood, B.J., Yan, P.: Polar transform network for prostate ultrasound segmentation with uncertainty estimation. Med. Image Anal. 78, 102418 (2022)
Yariv, L., Gu, J., Kasten, Y., Lipman, Y.: Volume rendering of neural implicit surfaces. Adv. Neural. Inf. Process. Syst. 34, 4805–4815 (2021)
Zhang, L., et al.: Generalizing deep learning for medical image segmentation to unseen domains via deep stacked transformation. IEEE Trans. Med. Imaging 39(7), 2531–2540 (2020). https://doi.org/10.1109/TMI.2020.2973595
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Chen, Y. et al. (2025). Geo-UNet: A Geometrically Constrained Neural Framework for Clinical-Grade Lumen Segmentation in Intravascular Ultrasound. In: Xu, X., Cui, Z., Rekik, I., Ouyang, X., Sun, K. (eds) Machine Learning in Medical Imaging. MLMI 2024. Lecture Notes in Computer Science, vol 15241. Springer, Cham. https://doi.org/10.1007/978-3-031-73284-3_30
Download citation
DOI: https://doi.org/10.1007/978-3-031-73284-3_30
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-73283-6
Online ISBN: 978-3-031-73284-3
eBook Packages: Computer ScienceComputer Science (R0)