Skip to main content

Geo-UNet: A Geometrically Constrained Neural Framework for Clinical-Grade Lumen Segmentation in Intravascular Ultrasound

  • Conference paper
  • First Online:
Machine Learning in Medical Imaging (MLMI 2024)

Abstract

Precisely estimating lumen boundaries in intravascular ultrasound (IVUS) is needed for sizing interventional stents to treat deep vein thrombosis (DVT). Unfortunately, current segmentation networks like the UNet lack the precision needed for clinical adoption in IVUS workflows. This arises due to the difficulty of automatically learning accurate lumen contour from limited training data while accounting for the radial geometry of IVUS imaging. We propose the Geo-UNet framework to address these issues via a design informed by the geometry of the lumen contour segmentation task. We first convert the input data and segmentation targets from Cartesian to polar coordinates. Starting from a convUNet feature extractor, we propose a two-task setup, one for conventional pixel-wise labeling and the other for single boundary lumen-contour localization. We directly combine the two predictions by passing the predicted lumen contour through a new activation (named CDFeLU) to filter out spurious pixel-wise predictions. Our unified loss function carefully balances area-based, distance-based, and contour-based penalties to provide near clinical-grade generalization in unseen patient data. We also introduce a lightweight, inference-time technique to enhance segmentation smoothness. The efficacy of our framework on a venous IVUS dataset is shown against state-of-the-art models.

Y. Chen and N. S. D’Souza—Joint first-authorship.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Errors on N2 major diams, remain above clinical precision despite slightly worsening.

References

  1. Arora, P., Singh, P., Girdhar, A., Vijayvergiya, R.: A state-of-the-art review on coronary artery border segmentation algorithms for intravascular ultrasound (IVUS) images. Cardiovasc. Eng. Technol. 14(2), 264–295 (2023)

    Article  Google Scholar 

  2. Blanco, P.J., et al.: Fully automated lumen and vessel contour segmentation in intravascular ultrasound datasets. Med. Image Anal. 75, 102262 (2022)

    Google Scholar 

  3. Cardoso, M., Li, W., Brown, R., et al.: Monai: an open-source framework for deep learning in healthcare. arXiv preprint arXiv:2211.02701 (2022)

  4. He, Y., et al.: Fully convolutional boundary regression for retina OCT segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 120–128. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_14

  5. Hendrycks, D., Gimpel, K.: Gaussian error linear units (GELUs). arXiv preprint arXiv:1606.08415 (2016)

  6. Huang, X., et al.: Post-IVUS: a perceptual organisation-aware selective transformer framework for intravascular ultrasound segmentation. Med. Image Anal. 89, 102922 (2023)

    Google Scholar 

  7. Huber, P.J.: Robust estimation of a location parameter. Annal. Statist. 53(1), 73–101 (1964). https://doi.org/10.1214/aoms/1177703732

  8. Karimi, D., Salcudean, S.E.: Reducing the Hausdorff distance in medical image segmentation with convolutional neural networks. IEEE Trans. Med. Imaging 39(2), 499–513 (2019)

    Article  Google Scholar 

  9. Kashyap, S., et al.: Feature selection for malapposition detection in intravascular ultrasound - a comparative study. In: Wu, S., Shabestari, B., Xing, L. (eds.) MICCAI 2023, pp. 165–175. Springer, Cham (2024). https://doi.org/10.1007/978-3-031-47076-9_17

  10. Ma, J., He, Y., Li, F., Han, L., You, C., Wang, B.: Segment anything in medical images. Nat. Commun. 15(1) (2024). https://doi.org/10.1038/s41467-024-44824-z

  11. Meng, L., Jiang, M., Zhang, C., Zhang, J.: Deep learning segmentation, classification, and risk prediction of complex vascular lesions on intravascular ultrasound images. Biomed. Signal Process. Control 82, 104584 (2023)

    Article  Google Scholar 

  12. Oktay, O., et al.: Anatomically constrained neural networks (ACNNs): application to cardiac image enhancement and segmentation. IEEE Trans. Med. Imaging 37(2), 384–395 (2018). https://doi.org/10.1109/TMI.2017.2743464

  13. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  14. Scarvelis, D., Wells, P.S.: Diagnosis and treatment of deep-vein thrombosis. CMAJ 175(9), 1087–1092 (2006)

    Article  Google Scholar 

  15. Secemsky, E.A., et al.: Intravascular ultrasound guidance for lower extremity arterial and venous interventions. EuroIntervention 18(7), 598 (2022)

    Google Scholar 

  16. Stähr, P., et al.: Importance of calibration for diameter and area determination by intravascular ultrasound. Int. J. Cardiac Imaging 12, 221–229 (1996)

    Google Scholar 

  17. Szarski, M., Chauhan, S.: Improved real-time segmentation of intravascular ultrasound images using coordinate-aware fully convolutional networks. Comput. Med. Imaging Graph. 91, 101955 (2021)

    Article  Google Scholar 

  18. Wissel, T., et al.: Cascaded learning in intravascular ultrasound: coronary stent delineation in manual pullbacks. J. Med. Imaging 9(2), 025001 (2022)

    Google Scholar 

  19. Xiao, H., Li, L., Liu, Q., Zhu, X., Zhang, Q.: Transformers in medical image segmentation: a review. Biomed. Signal Process. Control 84, 104791 (2023)

    Article  Google Scholar 

  20. Xie, M., et al.: Two-stage and dual-decoder convolutional u-net ensembles for reliable vessel and plaque segmentation in carotid ultrasound images. In: 2020 19th IEEE International Conference on Machine Learning and Applications (ICMLA), pp. 1376–1381. IEEE (2020)

    Google Scholar 

  21. Xu, X., Sanford, T., Turkbey, B., Xu, S., Wood, B.J., Yan, P.: Polar transform network for prostate ultrasound segmentation with uncertainty estimation. Med. Image Anal. 78, 102418 (2022)

    Article  Google Scholar 

  22. Yariv, L., Gu, J., Kasten, Y., Lipman, Y.: Volume rendering of neural implicit surfaces. Adv. Neural. Inf. Process. Syst. 34, 4805–4815 (2021)

    Google Scholar 

  23. Zhang, L., et al.: Generalizing deep learning for medical image segmentation to unseen domains via deep stacked transformation. IEEE Trans. Med. Imaging 39(7), 2531–2540 (2020). https://doi.org/10.1109/TMI.2020.2973595

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niharika S. D’Souza .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 7361 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, Y. et al. (2025). Geo-UNet: A Geometrically Constrained Neural Framework for Clinical-Grade Lumen Segmentation in Intravascular Ultrasound. In: Xu, X., Cui, Z., Rekik, I., Ouyang, X., Sun, K. (eds) Machine Learning in Medical Imaging. MLMI 2024. Lecture Notes in Computer Science, vol 15241. Springer, Cham. https://doi.org/10.1007/978-3-031-73284-3_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-73284-3_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-73283-6

  • Online ISBN: 978-3-031-73284-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics